Artificial neural networks for predicting petroleum quality
DOI:
https://doi.org/10.4013/jacr.2011.11.05Abstract
Due to limited understanding of many diagenetic processes which contributes to petroleum quality determination, mathematical models become a very useful tool to improve understanding of these processes and to improve reservoir quality predictions prior drilling. Especially for reservoir engineers and petrophysicists the distribution of porosity and permeability are very important in the formation evaluation and definition of recovery strategies and evaluation of reservoir quality. In this context, we have developed an artificial neural network based model to predict macroporosity of sandstones reservoir systems. We have used a score to quantify the importance of each feature in prediction process. This score allows creating progressive enhancement neural models, which are simpler and more accurate than conventional neural network models and multiple regressions. The main contribution of this paper is the building of a reduced model just with the most relevant features to macroporosity prediction. A dataset, containing petrographic and petrophysical characteristics, containing samples of the same formation sandstone reservoir was investigated. Study results show that progressive enhancement neural network is able to predict macroporosity with accuracy near 90%, suggesting that this technique is a valuable tool for reservoir quality prediction.
Key words: progressive enhancement neural model, reservoir quality prediction, macroporosity prediction.
Downloads
Published
Issue
Section
License
I grant the Journal of Applied Computing Research the first publication of my article, licensed under Creative Commons Attribution license (which allows sharing of work, recognition of authorship and initial publication in this journal).
I confirm that my article is not being submitted to another publication and has not been published in its entirely on another journal. I take full responsibility for its originality and I will also claim responsibility for charges from claims by third parties concerning the authorship of the article.
I also agree that the manuscript will be submitted according to the journal’s publication rules described above.