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Introduction

The information contained in the genome 
can be of great value to many studies. The 
genome is hereditary information encoded in 
deoxyribonucleic acid (DNA) that is passed 
to the descendants of an organism being 
formed of monomers called nucleotides. Each 
of these nucleotides has a molecule termed 
base, which can be Adenine, Cytosine, Gua-
nine and Thymine. 

In order to know the DNA of an organ-
ism it is necessary to extract this data using 
a genetic sequencer (Shendure et al., 2005) 
and then string them together. The genetic 
sequencing of the target organism extracts a 
large amount of small fragments of DNA, re-
petitive and disordered (Chaisson et al., 2004; 
Pandey et al., 2008; Sundquist et al., 2007) that 
must be assembled to obtain a consensus se-
quence of the bases which represent DNA 
(Mardis, 2008; Metzker, 2009). The assem-
bly process requires a lot of computational 
power, and a set of specific and efficient al-
gorithms to perform the sequence (Chaisson 
et al., 2009; Pevzner et al., 2001). 

The pipeline denovo2, illustrated in Figure 1
(Applied Biosystems, 2010; Life Technologies, 
2012) is a set of programs widely used for as-
sembling this large volume of data obtained 

Task scheduling in genetic sequencing tool

Jéfer Benedett Dörr, Guilherme Galante, Luis Carlos E. De Bona 
Universidade Federal do Paraná. Rua Cel. Francisco H. dos Santos, 100, 81531-980, Curitiba, Paraná, Brazil
jefer@ufpr.br, ggalante@inf.ufpr.br, bona@inf.ufpr.br

Abstract. This paper proposes a task scheduler to control the demand of sending gaps encountered during 
the process of genome sequencing processing considering computational resources available. Gaps are 
spaces without representation in the genome sequencing process. This activity generates many competing 
tasks that consume a lot of computational resources, mainly memory. The goal of the scheduler is to prevent 
more required computational resources besides those which can be alive supplied, because in this case, a 
performance degradation of the system will occur and it may cause a delay in the processing time of the 
tasks.  The motivation for this work is to improve the efficiency of the implementation of the closure of gaps 
in genome sequencing. For the evaluation of the proposal, a scheduler for gaps with scheduling policies 
based on monitoring of computing resources has been implemented.

Keywords: bioinformatics, scheduling tasks, genetic sequencing.

from these data sequencers and to generate 
one consensus DNA sequence. The assembly 
is performed by Velvet (Zerbino, 2008; Zerbino 
and Birney, 2008), an assembler which uses de 
Bruijn graphs, an approach capable of han-
dling a large amount of data with good cover-
age (Compeau et al., 2011). After assembly is 
held, the closing of gaps occurs with the inten-
tion of finding bases for the representation of 
empty positions. In this case, an instance of 
Velvet assembler is used for each gap, result-
ing in a large amount of tasks.

These multiple Velvet instances run simul-
taneously and in some cases may require more 
memory resources than the computing envi-
ronment can provide. The assembly tasks are 
fairly heterogeneous, varying from a few to 
hundreds of Gigabytes (GB). In order to keep 
all the tasks running, all the available memory 
is consumed and, as a consequence, the sys-
tem enters a state of performance degradation, 
causing delays in the tasks processing. This 
situation can be avoided by checking the avail-
able computational resources before starting 
new instances of the assembler. With this ob-
jective, a scheduler task has been proposed.

In the scheduler investigated, instead of 
processing all tasks at the same time and with 
no criteria as it was originally made, the tasks 
are triggered by observing the resource avail-
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ability needed for processing them. Thus, 
different tasks can be executed consuming 
resources in parallel, in a controlled manner, 
causing no performance degradation and re-
sulting in execution time reduction. By observ-
ing the availability of resources before submit-
ting a task for execution, this implementation 
can keep the task within the limits of available 
computational resources and avoids perfor-
mance degradation.

The proposed approach proved to be very 
efficient. In a first version of the scheduler, it 
was possible to reduce running time in 55% 
when compared to original implementation. 
With an enhanced version the time was re-
duced by 73% compared to the original time.

The rest of the paper is organized as fol-
lows: In the section “Related works”, related 
works are presented. The section “Pipeline de-
novo2: problems found” presents the details 
of the problem encountered during the execu-
tion of the pipeline denovo2 genetic sequenc-
ing. The section “Tasks scheduler for deno-
vo2” presents the proposed scheduler. In the 
section “Forecast of memory usage” the fore-
cast memory usage is presented. In the section 
“Experimental results” the results of the ex-
periments are presented. Finally, the section 
“Conclusion and future work“ presents the 
conclusions and suggests future work.

Related works

A task scheduler is considered a component 
that runs resource management. It is extremely 

important for parallel and distributed systems, 
and can be considered one of the most challeng-
ing problems in this area. Scheduling is to de-
termine in what order the tasks are executed. 
This work proposes task scheduling and pag-
ing preventing trashing on a parallel supercom-
puter using expected memory usage of each 
task, having the following related works.

The problem of resource sharing for many 
simultaneous tasks in a parallel system (Olivier 
et al., 2012), which may result in problems mak-
ing paging not possible to guarantee quality of 
service for the execution of all tasks is present-
ed in Batat and Dror (2000). Pagination affects 
the synchronization between tasks. An alterna-
tive is to impose access controls and only ad-
mit new tasks that fit into available memory. 
Despite suffering from delayed execution, 
this leads to a better overall performance by 
preventing the harmful effects of paging and 
trashing. In Setia et al. (1999) the impact of 
memory usage is evaluated for task scheduling 
considering the long-term problems to avoid 
paging and trashing super parallel comput-
ers using the characteristics of memory usage 
of each task. In the work of Arras et al. (2013) 
the processing subject to strong resource con-
straints, particularly in terms of memory was 
approached with extensions to list-scheduling 
algorithms for taking into account memory 
requirements. The suggested approach was a 
parallel scheduling with a new model featur-
ing memory tasks and priority adjustment of 
the tasks, achieved gain and preventing dead-
locks with priority adjustment. 

Figure 1. The pipeline denovo2.
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Finally, in Nikolopoulos and Polychrono-
poulos (2003) the prevention of paging and 
trashing is exploited for the efficient sched-
uling of parallel tasks. The challenge is to do 
as Ghodsi et al. (2011) consider the problem of 
fair resource in a system where each task has 
different demands.

Pipeline denovo2: problems found

The pipeline denovo2 is a set of programs 
implemented in different languages that are 
used together in order to receive fragments 
from genetic sequencers of new generation, 
capable of generating a large data volume and 
arrange them in order to assemble a c onsensus 
contiguous genome sequence, which is the re-
sult of multiple sequence bases alignment, and 
each base occurs more often in a given posi-
tion (Meidanis and Setubal, 1997).

 Depending on the data set being processed, 
the execution pipeline denovo2 can consume 
all available memory, causing slowdowns in 
the computer system as a whole and making 
the task prolonged indefinitely.

To identify the source of the problem, it 
was necessary to monitor the work performed 
by each pipeline stage denovo2. F or this, an 
Altix UV 100 machine was used. It offers, in its 
current configuration, a total of 256 GB of ran-
dom access memory (RAM) and 64 processing 
cores. Experiments were executed with the 
dataset named training1 set research provided 
by the Department of Biochemistry, Federal 
University of Paraná. No more information 

about the data set due to confidentiality of the 
survey was available.

The training1 set has a size of 111.6 million 
base pairs, contains 4,756 gaps that occupy 8 
GB of disk space, and results in an output of 
300 GB of data. Using this data set, the execu-
tion of the tasks occurred normally until the 
assembly phase, however, during the closing 
gaps phase, we were unable to verify the con-
sumption of the entire memory available im-
pacting application performance.

At this stage, demonstrated in Figure 2, an 
instance of Velvet (Zerbino, 2009) is executed 
for each gap found to try to assemble the parts 
that were left without representation bases. 
This procedure is repeated four times with 
different parameters for each gap. Because all 
instances are executed concurrently, it is pos-
sible to estimate approximately 280.000 tasks 
running concurrently for training1 dataset.

This large amount of concurrent tasks re-
quires memory allocation to keep the gaps in 
execution. At this stage, the 512 GB of RAM are 
not enough and 8 GB of swap are also used. By 
using the virtual memory swap, the speed of 
access to data drops dramatically (Tanenbaum, 
2008). Excessive consumption of RAM by lots 
of running tasks generate a flow to write and 
read a lot of data from the hard disk while 
running, caused by the paging mechanism 
that makes tasks exchanged between disk and 
swap. This situation makes the remaining pro-
cesses wait for a long time in queue to use the 
central unit processing (CPU). This problem 
is known as thrashing, which usually causes 

Figure 2. The pipeline denovo2.
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serious performance problems making the 
system unusable (Denning, 2008).

Trashing is a phenomenon that occurs 
when excessive paging is performed by re-
ducing CPU utilization and throughput. As 
an aggravating factor trashing the operat-
ing system detects that the CPU is idle (dur-
ing closing gaps CPU usage is below 1%) and 
admits more processes increasing the level 
of multiprogramming, and consequently the 
rate of pages failure, worsening performance 
(Denning, 1968; Denning, 2008). The graph in 
Figure 3 adapted from Denning (2008) demon-
strates how trashing affects performance; the 
horizontal axis shows the increase in the level 
of multiprogramming, while the vertical axis 
shows the efficiency of the implementation. 
While an increase of performance is expected 
by increasing the level of multiprogramming, 
the yield falls suddenly after a critical load 
(Denning, 2008).

This is exactly the behavior during the exe-
cution of the tests. The use of parallelism aims 
to improve performance, but when there is an 
excessive use of parallelism there may come 
a critical moment when the performance im-
provement expected from the way to a perfor-
mance decreases. This performance decrease 
is caused by the lack of resources which causes 
the phenomenon called trashing, as reported 
by Denning (1968) and reassessed by Denning 
(2008) as shown in Figure 3.

With the experiments, we determined 
that the problem is the large amount of jobs 
being executed in parallel. One way to solve 
this problem is to organize the instantiation of 
these tasks taking into consideration the avail-
ability of computational resources.

Tasks scheduler for denovo2

Scheduling is the action of determining in 
what order tasks are to be executed. A sched-
uler is a tool that allows the tasks control in 
accordance with the policies and the restric-
tions presented (Casavant and Kuhl, 1988; 
El-Rewini et al., 1994). The basic problem of 
the scheduler is to satisfy goals, how to get 
fast response time, maximize system output 
(flow), maximize processor utilization, avoid 
indefinite hold, combine tasks of high and low 
priority and minimize execution time, (Kunz, 
1991; Setia et al., 1999; Tanenbaum, 2008; Wu 
and Sun, 2004) according to the criteria de-
fined for scheduling.

The scheduling of tasks involves three 
main components: consumers, politics and 
resources. Tasks waiting to be executed are 
consumers. Resources are available compu-
tational resources, such as memory, disk and 
CPU. Finally, the scheduling policy is the set 
of rules used to determine when and which 
task should be executed. 

Figure 3. The expected performance being affected by trashing.
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The policy defined by the scheduler di-
rectly impacts performance of the application 
that is controlled. The proposed scheduler 
uses system information such as scheduling 
policies. When the system receives a new gap 
to be processed, the scheduler already knows 
the expected maximum usage of RAM for that 
gap. Then the free memory of the machine at 
the time is asked to verify the possibility to run 
the gap not transcending the limits of available 
memory, as shown in Section “Experimental 
results”. After performing this query if the 
condition is satisfied, the scheduler can submit 
a new gap to run. Then the scheduler receives 
another gap and performs the same verifica-
tion process before submitting tasks, as dem-
onstrated by the algorithm of Figure 4. Even in 
case of suffering some delay in the submission 
of tasks, execution is guaranteed, all within the 
machine’s capacity limits and thus allowing a 
more effective implementation resulting in 
performance gain.

The proposed policy for the scheduler is 
the use of the prediction of memory usage, 
considering the free memory given by an in-
ternal control. The scheduler triggers a task 
when the available memory is greater than the 
amount of memory that was required to per-
form the task.

Forecast of memory usage

It is possible that different data sets occu-
py the same space than other sets. Then, two 
fields with the same space occupied on disk 
can have a big difference in execution time and 
memory consumed.

To predict the memory usage for the im-
plementation gaps, 4 sample gaps for 5 dif-
ferent classes of intervals sizes were selected. 
The samples were classified according to the 
size occupied on disk and classes: mini (up to 
3 Megabytes (MB)), small (3.1 to 17 MB), me-
dium (17.1 to 37 MB), large (37.1 to 77 MB) 
and extra (above 77.1 MB). For each class the 
average usage of RAM was calculated and the 
standard deviation was added, so that these 
data were used to design expectation maxi-
mum memory usage, as shown in Table 1. 
With these values, a database of estimated 
values using each class gap was created du-
ring processing. These values are used in the 
decision of the scheduler policy to evaluate 
whether to submit new gaps, or wait for the 
required amount of free memory.

The free memory in the system is stored 
in a variable, from this moment it is this vari-
able that will answer the expectation of free 
memory on the machine. As the peak memory 

Figure 4. Implementation of an algorithm for scheduling gaps.

mini small medium large extra

Size on disk (MB) 3 13 37 77 112
Average memory usage (GB) 0,6 3,5 10 32 80
Standard deviation 0,4 0,5 3 3 5
Forecast of memory RAM usage (GB) 1 4 13 35 85

Table 1. Expected usage of RAM by classes gaps.



123Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

usage of tasks is close to its end, the scheduler 
must consider the long term, so for this rea-
son when launching a new task  is queried, the 
free memory is expected in this variable and 
not directly from the system. The expected 
maximum memory usage for the gap that will 
be run is subtracted at the end of this variable 
and this value is returned. Thus it is a paral-
lel control of the amount of available memory 
and that can be allocated without overloading 
the system.

Experimental results

To evaluate the results, a comparative 
analysis of the behaviour of computational re-
sources was made during the  original schedul-
er execution with the original implementation 
of the proposed scheduler, which implements 
the policies scaling the points raised in this 
work that could result in performance im-
provement. The tools used in the monitoring 
of resources were GNU/Linux operating sys-
tem SUSE Enterprise Server 11 SP1 x64 tools. 
The results were obtained by observing the 
logs generated during the execution of each of 
the two alternatives for closing the gaps.

 As a consequence of resource monitoring 
and management tasks using training1 set, the 
graph in Figure 5 shows the difference of the 
times obtained in implementing the two ap-
proaches using the same set of gaps. On the 
horizontal axis the time in hours is shown and 
on the vertical axis the original scheduler and 
the proposed scheduler are represented.  The 
original scheduler is represented in blue and 
the proposed scheduler is represented in red. 

The graph in Figure 6 shows, in red, the 
memory usage while running the original 
scheduler; and, in blue, while implement-
ing the alternative proposed scheduler with 

training1 set. The vertical axis shows, in GB, 
the amount of RAM used in runs while hori-
zontal axis represents the time in hours. The 
green line indicates the limit in GB of available 
memory, and the amount that should never be 
extrapolated.

As it can be seen in the graph of Figure 6, 
the original scheduler, in red, required the en-
tire available RAM and consumed the entire 
swap while maintaining maximum use prac-
tically throughout all the execution. The use 
of multiprogramming with consumption of 
the entire memory, represented by the green 
line, and swapping all trashing caused the 
phenomenon of extending the time required 
to complete the process and obtain the result. 
On the other hand, the proposed scheduler in 
blue never extrapolates the available memory 
and maintains a safety margin to leave memo-
ry available to the system, represented by the 
green line. When using RAM comes close to 
the memory limit set to the minimum neces-
sary to keep the system up and running, the 
proposed scheduler waits for free memory to 
instantiate new gaps. For this reason, curves 
can be observed in Figure 6 with the saw-tooth 
like behaviour. When enough memory is re-
leased, another gap is launched for execution. 
The memory will be released and the sched-
uler will dynamically perform the query until 
the free amount is sufficient for all processing 
of the next gap, according to the prediction for 
memory usage of the scheduling policy.

The graph in Figure 7 shows the CPU usage 
during the execution of the original scheduler 
and the proposed scheduler to compare the two 
approaches with training1 set. In red, the CPU 
usage is represented during the execution of 
the original scheduler, which is due to the prob-
lem of waiting for input and output operations 
which is due to the problem of waiting for input 

Figure 5. Comparison of execution times.
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and output operations caused by trashing the re-
duced CPU utilization and remains low, below 
1%. In blue, it is possible to observe a better us-
age of the CPU time by the proposed scheduler, 
achieved through better management of avail-
able resources and showing that avoiding bottle-
necks could improve the use  of CPU. By moni-
toring the resources in order not to overload the 
system and launching new tasks only when the 
required resource is available for execution, it 
was possible to avoid the problem of trashing. 
Not suffering from degradation caused by trash-
ing can better be nefit the processing power and 
with it the runtime decreases.

Disk usage was monitored by the result of 
iostat command of GNU/Linux operating sys-
tem, which reports statistics of input and out-
put of the system. In the extended mode, by us-

ing the -x parameter display you can view the 
result of the %util, which indicates the percent-
age of utilization, the flow, and disk access.

This field indicates how busy your disk ca-
pacity is to serve new requests. The %util field 
shows 100% in disk access when disk access is 
saturated and the device becomes a bottleneck, 
reducing system performance. Values above 
100% indicate that the disk system is over-
loaded, resulting in degradation of disk access 
performance. Reading and writing operations 
are a bottleneck and slow the progress of the 
execution of the closure of gaps. With control 
of memory, a result from using the scheduler, 
this index remained low and contributed to 
the reduction in runtime.

Figure 8 compares the results of the iostat 
command demonstrating the peak percentage 

Figure 6. Implementation of an algorithm for scheduling gaps.

Figure 7. Statement of CPU usage during the execution of 
alternatives for closing gaps.
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of disk utilization during the execution of 
the original scheduler and of the proposed 
scheduler with training1 set. As it can be seen 
in the graph of Figure 8, the value of the origi-
nal variable %util scheduler, in red, reached 
peak values of 5000%. In the case of the pro-
posed scheduler, in blue, this value remained 
below 10% throughout the run time, not caus-
ing any delay.

As shown in Figures 6 and 8 memory re-
sources and disk access were required in addi-
tion to their availability, which caused perfor-
mance bottleneck and would not allow use of 
processing, as shown in Figure 7, and conse-
quently caused delay in the execution of tasks. 
Managing the use of these resources enabled 
to improve performance by avoiding the bot-
tleneck problem and trashing, being able to re-
duce the execution time as shown in Figure 5.

All work undertaken so far in this article 
used the sequential version of the assembler 
(each task uses only one CPU core). This deci-
sion was taken because the parallel execution 
generated a high amount of tasks and prob-
lems that did not allow a complete execution 
of the task. Analyzing the sequential version 
the results proved the possibility of improving 
results, then, tests using the parallel version 
were resumed. In this first approach paral-
lelism was totally eliminated because it was 
being used incorrectly without getting any 
performance gain. The problem was to try to 
parallelize several small tasks, as well as to 
deplete the resources available for the high 
amount of tasks to be processed. The time for 
the management of parallelism was greater 
than the time it would gain the goal. There-
fore, the first approach eliminated the parallel 
executions. But as parallelism is advantageous 
for cases where the processing takes longer, 

we decided to test a conditional parallelism, 
which for the larger task parallelism was used 
and the smaller tasks were performed sequen-
tially. This is approach v2.

Parallelism is an effective technique for per-
formance gain on large tasks. The size of the 
task was the reason for the parallel version to 
take longer than the sequential version, since 
most of the tasks to be performed were classi-
fied as mini or small group. With parallelism 
an overhead of managing threads occurs, run-
ning in case of small tasks. The usage of paral-
lelism ends up generating more overhead than 
gain time. The larger task parallelism is advan-
tageous. Therefore, its use for the global event 
for all tasks was not advantageous due to the 
high number of small tasks. But differentiating 
the use for large jobs using the parallel version 
of the assembler and a small sequential ver-
sion seems a good pick and will be the next 
approach in trying to improve the runtime. 

To evaluate this second version of the pro-
posed scheduler, a second set of data has been 
used. The sampling set is the first set contai-
ning representatives of all sizes of tasks but in 
smaller quantities. In this second set there are 
300 gaps and the results of processing times 
can be seen in Figure 9, where the horizontal 
axis indicates the time in hours and the verti-
cal axis shows 3 versions used in the test: the 
original version in blue, the version that was 
the first proposed scheduler in red, and in yel-
low the proposal to improve the scheduler, 
called scheduler v2. In the proposed scheduler 
v2, differentiation of sequential and parallel 
use of the assembler used for closing gaps was 
performed.

With this set of data, the observed reduc-
tion of the original round to round using the 
proposed scheduler followed the same behav-

Figure 8. Statement waiting for disk access.
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ior as the first round of training set, reducing 
by approximately 55% the time necessary to 
complete execution. The proposed differen-
tiation using size as a criterion task to decide 
the use of a parallel or a sequential version of 
the assembler scheduler, termed as proposed 
scheduler version 2, achieved a 73% reduction 
in the time required for a full implementation.

Conclusion and future work

By using the scheduler it was possible to 
keep track of tasks that used resources ef-
ficiently and to be able to run multiple tasks 
in parallel. With this approach, the execution 
time in the experiments was reduced by 55% 
in relation to the time obtained from the origi-
nal scheduler and reduced implementation in 
73% compared to the original time using the 
scheduler with differentiate use of sequential 
or parallel implementation assembler, accord-
ing to the size of the task to be processed.

This work discussed only part of the pipe-
line denovo2 where the attempted closing of 
the gaps found is done, but it is possible to 
seek improvements and more efficient imple-
mentations also in other stages of this widely 
used tool in the quest for knowledge of DNA. 
Although this work is punctual at one of 
many phases that comprise the genetic se-
quencing pipeline denovo2 we identified and 
provided an efficient solution to a problem 
that prevents its execution thus impeding the 
work of genetic sequencing performed at the 
Department of Biochemistry and Molecular 
Biology of the Federal University of Parana 

and others that use the same tool for genetic 
sequencing.

As future work, it is possible to improve 
this scheduler updating field forecast to keep 
memory usage in parallel execution as much 
as possible with the task. The scheduler can be 
improved by using the best-fit scale to choose 
the best task and not wait for the resource to 
the next queue. As the processing of each task 
is independent, it can be proposed as a distrib-
uted processing. As there is still a large flow of 
reading and writing to disk all the time during 
a processing, execution in memory could be 
more efficient. It eliminates the bottleneck of 
reading and writing.
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