
Journal of Applied Computing Research, 3(2):103-117
July-December 2013
© 2013 by Unisinos - doi: 10.4013/jacr.2013.32.04

Introduction

XML language has become the preferred
format for data integration and information
exchange between organizations, and has
emerged as a well-accepted data model for het-
erogeneous data in many application domains.
With the growing use of XML as a format for
permanent storage of data, the topic of integrity
constraints has received increased importance
and has been identified as a challenging subject
of XML research, as there is a relevant need for
developing principles, algorithms and tech-
niques for efficiently managing XML data, con-
sidering its semi-structured nature. Although
XML provides many advantages based on the
ability to contain both data and information
about the data and to provide an extensible and
adaptable data format, it is hard for XML to ex-
press semantic information. The definition and
use of integrity constraints is one of the topics
of XML semantics, which is fundamental to
other XML research areas, such as normaliza-
tion, query optimization and data quality.

Several types of integrity constraints have
been studied in the context of XML language,

Conditional functional dependencies validation for
XML data: an approach based on attribute grammar

Maria Adriana Vidigal de Lima, Aryadne Guardieiro Pereira Rezende,
Caio Thomas Oliveira
Universidade Federal de Uberlândia. School of Computer Science. Av. João Naves de Ávila 2121, Bloco B,
38408-100, Uberlândia, MG, Brazil
madriana@facom.ufu.br, aryadne47@comp.ufu.br, caio@si.ufu.br

Abstract. The representation and the exchange of information originating from different data sources
is an increasingly common need for companies and industries to integrate their operations and also to
publish and trade information with government and other enterprises. For this purpose, there are many
standards based on XML language that were created to allow effective data communication and exchange in
a particular domain. In order to ensure data quality for XML data, this paper presents an approach based on
conditional functional dependencies verification. Conditional dependencies are an extension of traditional
database dependencies with the ability to enforce bindings of semantically related data values. The basis
of our verification method is a generic grammarware for validating XML integrity constraints in one tree
traversal. We use an attribute grammar to describe XML documents and constraints.

Keywords: conditional functional dependencies, data quality, XML integrity constraints.

as key constraints, functional dependencies,
inclusion dependencies and path constraints
(Buneman et al., 2001; Deutsch and Tannen,
2005; Hartmann and Trinh, 2006; Karlinger
et al., 2009). Those constraints are a mecha-
nism to express how elements contained in an
XML document are associated to each other.
Functional dependency is an important kind
of integrity constraint and many definitions
for XML functional dependencies with dif-
ferent notions were proposed in Arenas and
Libkin (2004), Liu et al. (2003), and Wang and
Topor (2005). As XML databases are designed
without much consideration of integrity con-
straints, tools for dependencies discovery
can be very useful to ensure data quality and
knowledge exploration. For that reason, algo-
rithms for dependencies discovery have been
proposed in the XML field (Trinh, 2008).

A novel extension of traditional functional
dependency referred to as conditional func-
tional dependency was recently introduced.
It was conceived to capture the notion of cor-
rect data in a specific situation. A conditional
dependency represents a weaker form of de-
pendency defined to act within a scope of data

104 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

limited by conditions on several attributes.
Only the tuples that satisfy these conditions
should be evaluated and this conditional ap-
plication allows contextualizing analysis on
data, and in addition, to find and correct spe-
cific inconsistencies. In this way, conditional
functional dependencies for XML (XCFD)
extend functional dependencies with a condi-
tional expression that allows the application of
a functional dependency only over parts of an
XML document, representing a specific subset
of data. As an example, suppose a database of
bank accounts in which we want to check (i) if
the bank is B1 then a unique account number
identifies each customer, (ii) if the credit card is
PlatinumCard for bank B2, then the card type
identifies the interest rate. Those conditions
are useful to understand the characteristics of
a given data subset, and also to assess quality.

In this work, an XML document is seen as
a structure composed of an unranked node-
labeled tree and some functions for handling
this tree. A path expression defines a way of
navigating XML trees and is fundamental for
the specification of integrity constraints in an
XML context. In this way, we want to express
conditional functional dependencies (XCFD)
based on path expressions using a homoge-
neous formalism for their verification, intro-
duced in Bouchou et al. (2011), founded on
attribute grammar and finite state automata.
The validation of an XML document is done
in one tree traversal, in the document read-
ing order, going top-down until leaf nodes
are reached and then, bottom-up, to finish
each node visit, until the root node. In the top-
down direction, the validation process uses

attributes to specify the role of each node vis-
ited with respect to the defined constraints.
In the bottom-up direction, the values con-
cerned by the constraints are pulled up and
treated via some other attributes. Our ap-
proach for XCFD validation does not depend
on document schema and is established by a
traversal function that receives an XML docu-
ment and a set of XCFDs, and checks if each
constraint is respected. The validation result is
a Boolean value that is a conjunction of each
XCFD Boolean result, as shown in Figure 1.

Paper organization: In Related Work we dis-
cuss related work on XML constraints and
their verification. Next, we introduce our ba-
sic definitions. In Validation of conditional
functional dependencies for XML we show
our algorithms, based on attribute grammar to
check if a set of XCFD is satisfied by an XML
document and we discuss the verification pro-
cess. In Framework for XML integrity con-
straints validation with conditions, we con-
sider aspects of design patterns to implement
the verification proposal taking into account
homogeneous formalism. Finally, we present
the conclusion of this paper and future work
perspectives.

Related Work

In the relational context, many works are
being developed to improve the quality of
integrated data, with renewed interest in the
application of classical dependencies (Fan,
2008; Liu et al., 2011; Bakhtouchi et al., 2011)
and conditional dependencies (Bohannon et

Figure 1. Validation structure. Overview of the verification process for a set of XCFDs.

105Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

al., 2007; Fan et al., 2008; Ma et al., 2014) for
the preservation of semantics, detection and
repairing of possible inconsistencies. In a simi-
lar way, classical and conditional dependen-
cies on XML data have been proposed for data
semantic verification. Several approaches for
XML functional dependencies have been pro-
posed (Buneman et al., 2001; Liu et al., 2003;
Wang and Topor, 2005; Shahriar and Liu, 2008;
Bouchou et al., 2012; Tan and Zhang, 2011),
and also for conditional functional dependen-
cies (Vo et al., 2011).

The implementation of constraint valida-
tors has received less attention. Our approach
performance is comparable to implementa-
tions in Vincent and Liu (2005), Shahriar and
Liu (2009), but contrary to them, it intends to
be a generic model for XML constraints valida-
tion. The ideas guiding this work are the ones
outlined in Bouchou et al. (2011). An incremen-
tal validation method for keys is defined in
Bouchou et al. (2007), using the generic model
considering multiple updates in an XML tree.
In Gire and Idabal (2010), the notion of incre-
mental validation is considered via the static
verification of functional dependencies with
respect to updates. However, in that work,
XFDs are defined as tree queries.

Basic definitions

Following the basic definitions used
throughout this paper are shown.

Definition 1. XML Document: Let = ele ∪
att ∪ data be an alphabet where ele is the set
of element names and att is the set of attri-
bute names. An XML document is represented
by a tuple T = (t, type, value). The tree t is the
function t: dom(t)   where  is a set of tags
and dom(t) is a set of positions. Given a tree
position p, function type (t, p) returns a value
in {data, element, attribute}. We also recall that,
in an XML tree, attributes are unordered while
elements are ordered.

A tree representing an XML document
containing bank account information is illus-
trated in Figure 2. At each node, its position
and its label (e.g., t(0) = bank and t(0.0.1) =
card) are shown together and values (in italic)
are associated to leaves. A path for an XML
tree t is defined by a sequence of tags or la-
bels. The path language PL is used to define
integrity constraints over XML trees. In PL,
[] represents the empty path, l is a tag in 
the symbol “/” is the concatenation operation,

“//” represents a finite sequence (possibly
empty) of tags, and “_” is any tag in . The
language PL is a common fragment of regular
expressions and XPath. A path P is valid if it
conforms to the syntax of PL and for all tags l
in P, if l=data or l  att then l is the last sym-
bol in P. We consider that a path P defines a
finite-state automaton AP having XML labels
as its input alphabet.

Definition 2. Instance of a path P over t: Let
P be a path in PL, AP the finite-state automaton
defined according to P, and L(AP) the language
accepted by AP. In a sequence of positions I=
v1/ …/vn, each vi is a direct descendant of vi-1 in
t. Then I is an instance of P over t if and only if
the sequence t(v1)/… /t(vn) L(AP).

A tuple is formed by the values or position
values found at the end of a path instance for a
path P over a tree t. The notion of tuple is im-
portant for integrity constraints for composing
values that may be compared and verified. A
functional dependency in XML (XFD) is de-
noted X Y (where X and Y are sets of paths)
and it imposes that for each pair of tuples t1
and t2, if t1[X] = t2[X] then t1[Y] = t2[Y]. A XFD
has a single path on the right-hand side and
possibly more than one path on the left-hand
side. This approach generalizes the propos-
als in Arenas et al. (2004), Liu et al. (2003), and
Wang and Topor (2005).

The dependency can be imposed in a spe-
cific part of the document, and, for this reason,
a context path can be specified. We distinguish
two kinds of equality in an XML tree, namely,
value and node equality. Two nodes are value
equal when they are roots of isomorphic sub-
trees. Two nodes are node equal when they are
the same position. To combine both equality
notions we use the symbol E, which can be
represented by V for value equality, or N for
node equality.

Definition 3. Functional dependency for
XML: Given an XML tree t, a functional de-
pendency for XML (XFD) is an expression of
the form

(C, ({P1 [E1], ... , Pk [Ek]}  Q [E]))

where C is a path representing the context
path, ending at the context node; {P1, …, Pk} is
a non-empty set of paths in t and Q is a single
path in t, both Pi and Q starting at the context
node. The set {P1, …, Pk} is the left-hand side
or determinant of an XFD, and Q is the right-

106 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

hand side or the dependent path. The symbols
E1,…,Ek,E represent the equality type associ-
ated to each dependency path. When the sym-
bols E or E1,…,Ek are omitted, value equality is
the default choice.

Definition 4. Satisfaction of functional de-
pendency for XML: Let t be an XML tree,  =
(C, ({P1 [E1], ... , Pk [Ek]}  Q [E])) an XFD. The
set S ={C/P1, …, C/Pk, C/Q} gathers all paths
from the root for constraint . Each instance I
of set S is defined by:

IS = {t1, …,tk, tq} where ti (i in [1..k]) is the
tuple formed by the values (or position
values, depending on Ei) found follow-
ing C/Pi [Ei] for instance I, and tq is tuple
obtained from C/Q [E].

The document represented by tree t satis-
fies the constraint  if and only if for all two
instances of S, namely IS and IR that coincide at
least on their prefix C, we have:

if {tS1, …,tSk} = {tR1, …,tRk} then tSq = tRq

Conditional functional dependencies are
similar to functional dependencies, but with a
peculiarity of having a conditional expression
that allows establishing a restriction associ-
ated to the values contained in a database.

Definition 5. Conditional functional depend-
ency for XML: Given an XML tree t, a condi-
tional functional dependency for XML (XCFD)
is an expression of the form

(C, (Cond, {P1 [E1], ... , Pk [Ek]}  Q [E]))

where C and {P1 [E1], ... , Pk [Ek]}  Q [E]
are defined similarly as in functional depen-
dencies for XML, and Cond is a combination
of expressions of the form: expr1 θ1 expr2 θ2 ….
θn-1 exprn. Each expression expri is a relational
expression and represents a condition. The
conditions are connected by logical operators
(θi for operations ⋀, ⋁), thus, several specific
conditions can be imposed in the constraint
definition. An expression expri is defined as a
sentence of the type PC ϕ vc, where PC is a
path expression, ϕ is a relational operator (= ; ≠
; < ; > ; ≤ ; ≥) and vc is the expected value.

Definition 6. Satisfaction of conditional
functional dependency for XML: Let t be an
XML tree,  = (C, (Cond, {P1 [E1], ... , Pk [Ek]}
 Q [E])) a XCFD. The set S ={ C/PC1, …, C/
PCn, C/P1, …, C/Pk, C/Q} gathers all paths from
the root for constraint , being C/PC1, …, C/PCn
the conditional paths. Each instance I of set S
is defined by:

I = {e1,…,en,t1,…,tk, tq} where each ei is a
value obtained from C/PCi and t1,…,tk,
tq are tuples obtained similarly to func-
tional dependencies for an instance I.

The document represented by tree t satis-
fies the constraint  if and only if for all two in-
stances of S, namely IS, IR that coincide at least
on their prefix C, we have:

if (((eS1 ϕ1 vc1 θ1 ... θn-1 eSn ϕn vcn) = True)
and ((eR1 ϕ1 vc1 θ1 ... θn-1 eRn ϕn vcn) =
True))

then
if {tS1, …,tSk} = {tR1, …,tRk} then tSq = tRq

Figure 2. XML tree. Fragment of the XML document containing information about bank accounts.

107Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

Example 1: In a context of a banking envi-
ronment we consider a situation where check-
ing accounts are integrated, as illustrated in
Figure 2. There are many kinds of checking ac-
counts: personal, salary, university, business,
etc., and for each one we can find differences
in type of data stored, operations and also and
restrictions that can be conditionally applied.
For example:

1. If the checking account is of type salary,
then it must be an individual personal
account. In this situation, it is not pos-
sible to associate other clients to this ac-
count.

2. Many employees can be associated to a
business account, but the same employ-
ee cannot be associated to more than
one business account.

3. Pre-approved credit is offered to per-
sonal accounts depending on the aver-
age balance factor, if this factor is great-
er than 0.

Those rules can be translated in two condi-
tional functional dependencies, respectively:
η1 = (/bank/checkingAccounts (/account/type =

“salary”, {account/number} \account\idClient))
η2 = (/bank/checkingAccounts (/account/type

= “business”, {account/employees/employee/idCli-
ent, account/employees/employee/idEmp}  \ac-
count\number))
η3 = (/bank/checkingAccounts (/account/type =

“personal” ⋀ /account/averageBalanceFactor > 0,
{account/averageBalanceFactor}  \account\pre-
approvedCredit))

Finite state automata for functional
dependencies in XML

We use finite-state automata (FSA) or
transducers (FST) to formalize paths in integ-
rity constraints. The input alphabet for the fi-
nite-state automata is the set of XML tags. The
output alphabet for transducers is composed
by our equality symbols (for XFDs) and also
by the expected values in conditions with the
respective relational operator (for XCFDs).
We denote a FSA by 5-tuple A = (Θ, V, Δ, e, F)
where Θ is a finite set of states; V is the alpha-
bet; e  Θ is the initial state; F  Θ is the set of
final states; and Δ: Θ × V  Θ is the transition
function. A FST is a 7-tuple A = (Θ, V, Γ, Δ, e,
F, λ) such that:

(i) (Θ, V, Δ, e, F) is a FSA
(ii) Γ is an output alphabet
(iii) λ is a function from F to Γ indicating

the output associated to each final state

From Definition 3 we know that in an XFD,
path expressions C, Pi and Q (i  [1, k]) specify
the constraint context, the determinant paths
and the dependent path, respectively. These
paths define path instances on an XML tree t.
To verify whether a path instance corresponds
to one of these paths we use the following au-
tomata and transducers:

- The context automaton M = (Θ,Σ, Δ , e, F)
expresses path C. The alphabet Σ is composed
by XML document tags.

- The determinant transducer T’ = (Θ’,Σ, Γ’,
Δ’, e’, F’, λ’) expresses paths Pi (i  [1, k]). The
set of output symbols is Γ′ = {V,N}×N* such
that V (value equality) and N (node equality)
are the equality types to be associated to each
path. Each path is numbered because there
may be more than one path in the dependent
side. Thus, the output function λ′ associates a
pair (equality, rank) to each final state q  F′;

- Path Q is expressed by the dependent
transducer T” = (Θ”, Σ, Γ”, Δ”, e”, F”, λ”). The
set of output symbols is Γ” = {V,N} and the out-
put function λ” associates a symbol V or N to
each final state q  F”.

For conditional functional dependencies,
there is another set of paths, representing the
conditions that must be verified. For this pur-
pose, a new transducer is used to formalize the
paths in the part Cond, specified in Definition 5:

- All paths contained in the Boolean expres-
sions defined in Cond are expressed by the
conditional transducer TC = (Θc, Σ, Γc, Δc, ec, Fc,
λc). The set of output symbols is Γc = Σ × {= ; ≠;
< ; > ; ≤ ;≥} × N* such that the expected values
defined in conditions and also the respective
relational operation can be associated to each
conditional path. Thus, the output function
λc associates a triple (vc, ϕ, rank) to each final
state q  Fc.

A finite-state automaton is a machine that
can be in one of a finite number of states, and
in certain conditions, it can switch to another
state by a transition. When the machine starts
working it may begin from an initial state, in
the case of XML data, the state representing
the root node. Figure 3 illustrates FSAs and
FSTs for XCFDs η1 and η3 defined in Example 1.

Attribute grammar

The general process for validating integ-
rity constraints in XML documents can be
performed with the use of an attribute gram-
mar. Attribute grammars are extensions of
context-free grammars that allow to specify

108 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

not only the syntax, but also the semantics of a
language. We consider a context-free grammar
G = (VN, VT, P, B) where VN is the set of non-
terminal symbols, VT is a set of terminal sym-
bols, P is the list of productions and B is the
start symbol. In order to annotate extra infor-
mation to a symbol, we attach semantic rules
to its productions. In a semantic rule we can
create attributes that may represent anything:
a string, a number, a type, a memory location
Aho et al. (1988). Those rules are declarative
specifications describing how the attached at-
tributes are computed. Two types of attributes
can be found in a semantic rule: synthesized
and inherited. Synthesized attributes carry in-
formation from the leaves of a tree to its root,
while inherited ones transport information in-
versely, from root to leaves.

An attribute grammar is a triple GA = (G,
A, F) where: G is a context-free grammar; A
is the set of attributes and F is a set of seman-
tic rules attached to the productions. For X 
VN ∪ VT, we have A(X) = S(X)+I(X), i.e., A(X) is
a set composed by the disjoint union of S(X),
that is the set of synthesized attributes of X

and I(X), the set of inherited attributes of X.
For each production p: X0  X1 . . .Xn, the set
Fp contains the semantic rules that handle the
set of attributes of p and describe its semantic
features. In consequence, the semantic pars-
ing of a sentence is executed using the set of
actions associated to each production rule. In
each action definition, the values of attribute
occurrences are calculated in terms of other at-
tribute values.

In this work we assume that G is a simple
grammar describing any XML tree. To verify
integrity constraints, one may augment G by
semantic rules, using attributes that can con-
stitute information to be used in the valida-
tion. Consider a context-free grammar G with
the following three generic production rules:

(i) Root  α1 . . . αm, m ∈ N.
(ii) A  α1 . . . αm, m ∈ N*
(iii) A  data

where (i) defines the production in which
α1 … αm are direct descendent nodes from the
root node, (ii) defines the production rule for

Figure 3. Examples of automata and transducers. Automata and transducers for XCFDs η1 and η3.

109Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

an internal node that must have at least one
direct descendent, and (ii) defines the produc-
tion for a leaf node.

The grammar G can be augmented by se-
mantic rules, containing grammar attributes,
defining the exact actions that must be per-
formed concerning integrity constraints vali-
dation. The parsing of an XML document is
done by a top-down traversal in its tree us-
ing open-tag and close-tag events. During the
descendent direction, the validation process
defines the role of each node regarding the
constraints being verified by using the finite
state automata that formalize its paths. This
information is stored in an inherited attribute,
since it is calculated in the descendent direc-
tion. When leaves are reached then an upward
trajectory begins to treat and store the encoun-
tered values, concerning the constraints, into
synthesized attributes.

Validation of conditional functional
dependencies for XML

The conditional functional dependencies
validation process receives a set of XCFDs and
a XML document. The validation of a XCFD
is accomplished using an attribute grammar
approach, wherein for each node in the XML
tree, inherited and synthesized attributes are
associated. Each association takes advantage
of one of two parser events over the XML tree
to be validated. The two events are: open-tag
and close-tag. Considering ω a set of XCFDs
to be verified, the traversal in the XML tree is
performed according to Algorithm 1.

Algorithm 1 – Validation of conditional
functional dependencies

Input:
(i) ω: a set of z XCFDs
(ii) Doc: an XML document
Output: the Boolean value true if the document
satisfies the set of XCFDs, otherwise false.

Local Variables:
(i) tg : document tag referring to a node
(ii) InhStack: stack to store inherited attributes
tuple
(iii) SyntStack: stack to store synthesized at-
tributes tuple
(iv) InhAttList: k-tuple to organize inherited
attributes for XCFDs
(v) SynAttList: k-tuple to organize synthe-
sized attributes for XCFDs

(1) for each XCFD ηi  ω do
(2) build Mηi, T’ηi, T”ηi, Tcondηi;
 // FSA and FSTs for XCFDs
(3) push (NULL,…, NULL) into SynStack;
(4) push ({Mη1.e0},..., {Mηk.e0}) into InhStack;
 // Initial states for FSAs
(5) for each tag tg in XML document do
(6) if tg is an opening tag then
(7) inhAttListparent = top from InhStack;
(8) for each XCFD ηi  ω (i in [1..z]) do
(9) inhAttηi = calculateInhAttributes(tg,

inhAttListparent[i],
 (Mηi, T’ηi, T”ηi, Tcondηi));
(10) inhAttList = (inhAttη1,...,inhAttηz);
(11) push inhAttList into InhStack;
(12) push (NULL,…, NULL) into SynStack;
(13) else //closing tag
(14) inhAttListcurrent = pop from InhStack;
(15) synAttListcurrent = pop from SynStack;
(16) synAttListparent = pop from SynStack;
(17) if (leaf(tg)) then
(18) for each XCFD ηi  ω (i in [1..z]) do
(19) synAttηi = calculateSynAttributes-

Leaf(tg, inhAttcurrent[i], synAttcurrent[i],
synAtt parent [i]);

(20) else
(21) for each XCFD ηi  ω (i in [1..z]) do
(22) synAttηi = calculateSynAttribute-

sInt(tg, inhAttcurrent[i], synAttcurrent[i],
synAttparent[i]);

(23) synAttList = (synAttη1,...,synAttηz);
(24) push synAttList into SynStack;
(25) syntAttListroot = pop from SynStack;
(26) result = calculateResult(syntAttListroot);
(27) return result;

Algorithm 1 expresses a non-recursive
function that uses stacks to direct the tra-
versal of an unranked XML tree for the veri-
fication of z XCFDs. Two stacks are used to
organize the association between grammar
attributes and tree nodes. The first stack,
inhStack is responsible for storing, for each
node that is found (at open-tag event), a z-
tuple containing the inherited attributes that
were calculated for all XCFDs at that point.
The second one is synStack and it is used
for saving the z-tuple of the synthesized at-
tributes computed, at close-tag event, for all
constraints, during the tree visit. At the end
of the tree traversal, the constraints verifica-
tion is finally computed at the root node us-
ing its associated z-tuple at synStack. If, for
all XCFDs, no violations were found then
the function calculateResult returns true, oth-
erwise, false.

110 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

Grammar attributes and their
computation

In this section we detail inherited and syn-
thesized attributes used in Algorithm 1 and
their computation. The grammar attributes are
responsible for storing values and partial re-
sults of treatments and comparisons between
the encountered values that concern defined
constraints. One inherited attribute is used for
each constraint at each node to assign the rule
of a node tag with respect to a given XCFD. On
the other side, various synthesized attributes
are needed for each constraint at each node, be-
cause they are used for creating the tuples for
the encountered values (determinant and de-
pendent side of the dependencies), to compute
and store values referring to the conditions, and
to store the result of manipulations and com-
parisons between dependencies values.

Inherited attribute

The inherited attribute used in the XCFD
verification is named conf. As shown in Al-
gorithm 1, line 7, it is calculated for each con-
straint when an opening tag is found. The
computation of this attribute uses the automa-
ton and transducers that were built using the
path expressions given by an XCFD and also
information from the conf attribute value as-
sociated to its parent node. The conf attribute
calculation for each node (at open-tag event)
for each XCFD is specified in Algorithm 2, con-
sidering the rules for XML grammar defined
in section 3.2.

Algorithm 2 - Calculation of conf attribute

Function name: calculateInhAttributes
Input:
(i) A: tag opening (current node)
(ii) ParentConf: attribute conf (from parent

node)
(iii) M, T’, T”, Tcond (FSA and FSTs for a XCFD η)
Output: conf attribute for node A

(1) if A is ROOT node then
(2) conf := {M.q1| Δ(q0, A) = q1};
(3) else
(4) for each K.q  ParentConf do
(5) if (K = M) ∧ (q  F) then
(6) conf := conf ∪ {T’.q1′ |Δ’(q0′, A) =

q1′}∪
 {T”.q1” | Δ” (q0”, A) = q1”} ∪
 {TC.q1

c |Δc(q0
c, A) = q1

c};

(7) else
(8) conf := {K.q’| ΔK(q, A) = q’};
(9) return conf;

The conf attribute is calculated according to
Algorithm 2 and it stores a set of configura-
tions of type M.e, where M is a FSA or FST,
and e is a state of M. In line (1) from Algorithm
2 we specify the case where the current node
is the tree root. In this case the attribute conf is
calculated by initializing the FSA M (for con-
text path) and executing a transition using the
root tag. If the current node is not the root (line
(3)) then we must check if the final state from
FSA M is reached. If it is the case, then transi-
tions for FSTs T’, T” and TC from their initial
states may be executed to check if this node is
in their paths. Then the corresponding config-
urations are stored in conf. Figure 4 shows the
computation of attribute conf for XCFD η1 us-
ing the corresponding FSA and FSTs depicted
in Figure 3.

Synthesized attributes for leaf nodes

When a leaf node is found it is necessary to
verify if data contained in this node concerns
any dependency being verified and, and if so,
data is collected in synthesized attributes. To
define the synthesized attributes, we recall the
XCFD definition that is (C, (Cond, {P1 [E1], ... , Pk
[Ek]}  Q [E])). Initially, we define the attributes
dsi, i in [1..k] to store values respectively to paths
Pi , attribute dc to save values concerning path Q,
and dcondj, j in [1..n], to store the values obtained
from conditional paths in Cond. Also, an attrib-
ute inters is defined to gather all values found
for a constraint in tuples <lcond, ldep>, where
lcond = <dcond1, …, dcondn>, and ldep is a tuple
<lds, dc> to store the determinant part and the
dependent part of the dependency (respectively
l1 and l2). For this purpose, lds = <ds1,…, dsk>.

An extra attribute, called c, is defined to
store a Boolean value representing the result
of the validation for a context. At a leaf node,
this result is not calculated yet. Synthesized at-
tributes are grouped in a structure specified by
(dcondj, dsi, dc, {inters}, c). Empty values are filled
with the symbol ε as detailed in Algorithm 3.

Algorithm 3 - Calculation of synthesized
attributes for leaf nodes

Function name: calculateSynAttributesLeaf
Input:
(i) A: tag closing (current node)

111Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

(ii) CurrentConf: conf attribute (from current
node)

(iii) CSA: synthesized attributes (dcondj,dsi,dc,
{inters},c) of current node

(iv) PSA: synthesized attributes (dcondj,dsi,dc,
{inters},c) of parent node

Output: PSA
(1) for each configuration K.q  CurrentConf do
(2) if (K = T’) ∧ (q  F’) then
(3) y:= λ’(q);
(4) i:= y.rank;
(5) if y.equality = V then
(6) CSA.dsi:= <data_value(A)>;
(7) else
(8) CSA.dsi:= <node_value(A)>;
(9) CSA.inters := CSA.inters ∪ {<<ε,…

,ε>,<<ε,…,dsi,…,ε>,ε>>};
(10) if (K = T”) ∧ (q  F”) then
(11) if λ”(q) = V then
(12) CSA.dc:=<data_value(A)>;
(13) else
(14) CSA.dc:=<node_value(A)>;
(15) CSA.inters := CSA.inters ∪ {<<ε,…

,ε>,<<ε,…,ε>,dc>>};
(16) if (K = TC) ∧ (q ∈ Fc

) then
(17) z := λc(q);
(18) j := z.rank;
(19) ev := z.expectedValue;
(20) op := z.relationalOperator;
(21) v := <data_value(A)>;
(22) CSA.dcondj := eval(v,op,ev);
(23) CSA.inters := CSA.inters ∪ {<<ε,…

,dcondj,…,ε>,<<ε,…,ε>,dc>>};
(24) PSA.inters := PSA.inters ∪ mapping(CSA.

inters);
(25) return PSA;

The process expressed in Algorithm 3 de-
termines that all leaf values may be verified,
and if they are values from the determinant
part, we use the attributes dsi to collect them
first. The value concerning the dependent part
of the dependency is stored in dc, and those
from conditional paths are verified and the
result is stored in dcondj for each conditional
expression. The attribute inters is important
because it provides a mechanism to build and
group the complete tuples of the instances
found for each dependency. The function
mapping in line 24 is responsible for merging
some tuples and eliminating empty values.

Synthesized attributes for internal nodes

Continuing the bottom-up visit in the XML
tree, all synthesized attributes (dcondj, dsi, dc,
{inters}, c) are calculated for internal nodes
at close-tag events. This computation uses
the synthesized attributes obtained until this
point (from its child nodes). Those pieces of
information must be treated and carried up
to the parent node (which is not yet closed) to
be regrouped with information from previous
siblings. Algorithm 4 describes the process of
calculating and associating synthesized attrib-
utes for internal nodes that carry the depend-
encies values and verifying their properties.

Algorithm 4 - Calculation of synthesized
attributes for internal nodes

Function name: calculateSynAttributesInt
Input:
(i) A: tag closing (current node)

Figure 4. Fragment of the XML document. In this fragment the computation of the attribute conf for XCFD
η1 is shown.

112 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

(ii) CurrentConf: conf attribute (from current
node)

(iii) CSA: synthesized attributes (dcondj,dsi,dc,
{inters},c) of current node

(iv) PSA: synthesized attributes (dcondj,dsi,dc,
{inters},c) of parent node

Output: PSA

(1) for each configuration K.q  CurrentConf do
(2) if (K = T’) ∧ (q  F’) then
(3) y:= λ’(q);
(4) i:= y.rank;
(5) if y.equality = N then
(6) CSA.dsj:=<node_value(A)>;
(7) CSA.inters := CSA.inters ∪ {<<ε,…

,ε>,<<ε,…,dsi,…,ε>,ε>>};
(8) PSA.inters := PSA.inters ∪ mapping

(CSA.inters);
(9) if(K = T”) ∧ (q  F”) then
(10) if λ”(q) = N then
(11) CSA.dc:=<node_value(A)>;
(12) CSA.inters := CSA.inters ∪ {<<ε,…

,ε>,<<ε,…,ε>,dc>>};
(13) PSA.inters := PSA.inters ∪ mapping

(CSA.inters);
(14) if(K ≠ M) ∧ (q  FK) then
(15) PSA.inters := PSA.inters ∪ mapping

(CSA.inters);
(16) if(K = M) ∧ (q  FM) then
(17) CSA.c = true
(18) CSA.c := < w,z  CSA.inters, w ≠ z:

validateCondition(w) ∧
validateCondition(z) ∧
w.ldep.lds = z.ldep.lds 
w.ldep.dc = z.ldep.dc >;

(19) PSA.c := CSA.c ∧ PSA.c;
(20) if(K = M) ∧ (q  FM) then

(21) PSA.c := CSA.c ∧ PSA.c;
(22) return PSA;

As described in Algorithm 4, the values
that are part of the conditional functional
dependency are collected, treated and car-
ried up to the context node. Attribute inters
is responsible for gathering (bottom-up)
the values that are in conditional, determi-
nant and dependent path intersections. At
the context nodes, these intersection values
are compared in order to verify the XCFD
satisfaction. Attribute c is used to carry the
dependency validity (true or false) from the
context level to the root. It can be observed
that in line (17) of Algorithm 4 the c value re-
mains neutral (true) if there are no instances
of XCFD that respect the condition imposed
by an XCFD.

In Figure 5, we show the computation
of synthesized attributes for XCFD η1 in a
small portion of an XML document. Due to
the determinant part of the XCFD, attribute
ds1 stores the values obtained from number
(bank account number). As there are not any
other paths in the determinant side, then dc
stores the client identification code (idCli-
ent). For the conditional expression, we have
only one conditional path, defining that the
account type must be “salary”, then the attri-
bute dcond1 stores the value true. The inter-
section sets are calculated for all leaf nodes
and they are carried up to parent node, as
the corresponding nodes are closed. At this
point function mapping is responsible for
combining those intersection tuples coming
from the child node with the ones already at

Figure 5. Computation of attributes dcond1, ds1, dc, inters and c for XCFD η1.

113Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

the parent node. After closing all child nodes,
for node labeled account, we have inters =
{<<true>,<<43523>,CC2423>>}. At the node
labeled checkingAccounts all intersection sets
are combined, and as it is a context node, all
tuples contained in the intersection set are
verified (according to Definition 6) and if no
violations are identified, the result for the ver-
ification is true, and it is stored in attribute c.

Auxiliary algorithms

This section defines the auxiliary algo-
rithms used in the previous main algorithms.
In line (22) of Algorithm 3, a function eval is
used to evaluate a relational expression. This
function is detailed in Algorithm 5.

Algorithm 5 – Evaluation of Relational
Expressions

Function Name: eval
Input:
(i) value : String
(ii) operator : String
(iii) expectedValue : String
Output: a Boolean value

(1) if (op = “=”) then
(2) result := (value = expectedValue);
(3) else if (op = “!=”) then
(4) result := (value != expectedValue);
(5) else if (op = “<”) then
(6) result := (value < expectedValue);
(7) else if (op = “>”) then
(8) result:= (value > expectedValue);
(9) else if (op = “<=”) then
(10) result := (value <= expectedValue);
(11) else if (op = “>=”) then
(12) result := (value >= expectedValue);
(13) else return false;
(14) return result;

It can be seen in lines (16-18) from Algo-
rithm 4 that when a given node is reached in
the XML document and at the same time a fi-
nal state in the context path is also reached, a
checking is executed to ensure that the XCFD
instances respect the value constraints speci-
fied on the condition expression. The function
validateCondition uses the intersection values
(from attribute inters associated to current
node) and verifies whether this tuple is com-
plete and resolves the values contained in
the conditional part of the tuple. Algorithm 5
specifies this process.

Algorithm 6 – Evaluation of conditional
expression

Function Name: validateCondition
Input:
(i) i: inters attribute
Output: a Boolean value

(1) condValue = i.ldep.dcond1;
(2) for each opi (1 ≤ i ≤ n−1)  Cond do
(3) if (opi = ′∧′) then
(4) condValue:= condValue ∧ i.ldep.dcon

di+1;
(5) if (opi = ′∨′) then
(6) condValue:= condValue ∨ i.ldep.dcon

di+1;
(7) return condValue;

The mapping function does all possible
combinations with the values coming from
child intersections tuples, replacing empty
values. This process is important to complete
instances of XCFDs with values that come up
from different parts of the XML tree and is
shown in Algorithm 7.

Algorithm 7 – Mapping for intersection
values

Function Name: mapping
Input: curInters: set of inters attributes
Output: newInters: set of inters attributes

(1) newInters = {};
(2) for each tuple ti in curInters do
(3) if (ε  ti.ds ∧ ε  ti.dc ∧ ε  ti.dcond) then
(4) newInters:= newInters ∪ ti;
(5) else
(6) for each tuple tj in curInters (j≠i) do
(7) newInters:= newInters ∪ combine(ti,tj);
(8) return newInters

When an empty value is found in an inter-
section tuple, we must try to replace it by look-
ing up into all other intersection tuples that are
in the same set for a node. This is shown in line
(6) of Algorithm 7. For two intersection tuples,
the combination between them is defined in
Algorithm 8.

Algorithm 8 – Combination for two tuples
with empty values

Function Name: combine
Input:
(i) t1: inters tuple <lcond,ldep>

114 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

(ii) t2: inters tuple <lcond,ldep>
Output: setInters: set of inters tuples

(1) for each field f of an inters tuple do
(2) if (t1.f = ε) ∧ (t2.f ≠ ε) then
(3) t1.f := t2.f;
(4) if (t1.f ≠ ε) ∧ (t2.f = ε) then
(5) t2.f := t1.f;
(6) if (t1 = t2)
(7) setInters = {t1}
(8) else setInters = {t1, t2}
(9) return setInters

Framework for XML integrity
constraints validation with
conditions

We propose a general framework to vali-
date integrity constraints for XML data. In
this section, the architectural design for this
environment is treated. The framework is
based on a homogeneous formalism used to
express different integrity constraints and it is
expected to validate not only traditional and
conditional functional dependencies, but also
traditional and conditional inclusion depend-
encies. The software is being developed in Java

language and the choice of this technology is
justified by its portability between different
platforms. The component used to manipulate
a set of XML documents is SAXParser and the
server used is Tomcat, which allows integrat-
ing Java console and web applications. This
research aims to develop a software in which
non-proprietary APIs are used, that is, open-
source components.

Considering that the same formalism is
used to define and validate integrity con-
straints, based on path expressions and is eval-
uated using FSAs and FSTs, design patterns are
very useful to define the software architecture
with the purpose of facilitating code reuse and
flexibility as discussed in Kuchana (2004) and
Gama et al. (1994). We use UML diagrams to
represent different views of our system model.
Figure 6 partially illustrates the Class Diagram
outlining the integrity contraints concerned.
The dashed lines bypass dependences that are
not yet implemented. The AbstractConstraint
class defines the common characteristics of all
constraints and is designed to be a base class
for integrity constraints.

Figure 7 demonstrates the application
packages organization for XML validation.

Figure 6. Framework classes. AbstractConstraint class its derived classes.

Figure 7. Packages. Overview of the packages organization.

115Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

The proposed environment applies the MVC
(Model-View-Control) architectural design
pattern, which is, in our case, useful to sepa-
rate data model with validation rules from
the user’s interface. This approach helps to
improve communication among developers,
to increase the understanding of contents for
each folder and allows better organization of
the application.

The Model package contains the applica-
tion object and is divided into three other
sub-packages. The Validator package is re-
sponsible for organizing the constraints vali-
dation. Constraints package includes all basic
features of restrictions. Synthesized and Inher-
ited attributes are defined specifically for each
constraint type. Assistant package contains
helper classes used for building temporary
structures, namely stacks, lists and hash ta-
bles. The Automata package includes all classes
that involve the definition of finite automata
and their corresponding operations. The Con-

troller package contains classes for specifying
actions used by Struts 2 to perform validation
operations through web interface and to redi-
rect actions. The View package implements the
system interface and allows the user to interact
through the graphical user interface (GUI) or
browser user interface (BUI). For usability, the
user can insert, edit or remove constraints for
validation, and use the XML file sent to the last
upload, avoiding the use of unnecessary band-
width. Thus, it is also possible to view detailed
results of the validation, thus creating a stand-
ard for the application.

In this project, the behavioral pattern Ob-
server is implemented, where an object (called
the subject) maintains a list of its dependents
(called observers). These modifications enable
the application to become extensible to ac-
commodate new types of integrity constraints
that are independent from each other. The Ob-
server pattern is also a key part in Model View
Controller (MVC) pattern.

Figure 8. Framework classes. The class diagram for validators of a set of constraints.

116 Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

Figure 8 illustrates a class diagram (from
package Validator) that models the characteris-
tics of the Observer pattern in this framework.
The scenario contains the subject ValidationSax-
Parser and a set of observers. The subject main-
tains a dynamic list of observers, and they can
change their state when receiving notification
from the subject.

Conclusions

The research method employed in this
work aims the application of basic concepts
such as databases and compilers theory to cre-
ate a set of algorithms to validate Conditional
Functional Dependencies in XML documents.
It also uses an analytical approach that in-
tends to explain how XCFDs validation can be
performed. The materials used here involved
XML SAXParser, Tomcat server, and comput-
er science theoretical concepts like functional
dependencies, attribute grammar and design
patterns such as Observer. With these tools we
were able to define algorithms capable to vali-
date any well-defined Conditional Functional
Dependency in an XML document, as present-
ed in this article.

An attribute grammar can be defined for
the validation of integrity constraints over
XML data by performing various annota-
tions and calculations that are associated
to the tree nodes during one tree traversal
in an XML document. The main advantage
of this proposal is to be based on a generic
method founded on finite automata and
grammar attributes, which can be adapted
to the validation of other types of restric-
tion. The validation of conditional func-
tional dependencies allows the quality of
the XML data to be analyzed from specific
conditions imposed on the data (semantic
imposition) which can be quite useful in
data integration environments.

The use of the behavioral pattern Observer
allows our framework to have a low coupling
between the validation classes. Thus, each
class is enabled to perform its validation pro-
cess without interference from other types of
constraints validation, once for every event oc-
curring at tree traversal each class is individu-
ally notified and performs its own response
action. Furthermore, this approach gives the
opportunity to extend the system to other
types of constraints validation and contributes
to the identification and management of in-
consistent information.

As a continuation of this work, a module
that provides the correction of possible incon-
sistencies that are raised during the validation
process is proposed. Those corrections might
consider data semantics, error type, and can be
formally defined with insertion, exclusion and
substitution operations over branches and val-
ues. Another future improvement in this work
is the processing of integrity constraints vali-
dation over XML collections stored in distrib-
uted storage, using a map-reduce framework.

References

AHO, A.V.; SETHI, R.; ULLMAN, J.D. 1988. Compi-
lers: principles, techniques, and tools. Massachuset-
ts, Addison-Wesley, 796 p.

ARENAS, M.; LIBKIN, L. 2004. A normal form for
XML documents. ACM Transactions on Database
Systems, 29(1):195-232.

 http://dx.doi.org/10.1145/974750.974757
BAKHTOUCHI, A.; BELLATRECHE, L.; AIT-

-AMEUR, Y. 2011. Ontologies and functional
dependencies for data integration and reconci-
liation. In: International Conference on Advan-
ces in Conceptual Modeling: Recent Develop-
ments and New Directions, 30th, Brussels, 2011.
Proceedings… Brussels, 6999:98-107.

 http://dx.doi.org/10.1007/978-3-642-24574-9_13
BOHANNON, P.; FAN, W.; GEERTS, F.; JIA, X.;

KEMENTSIETSIDIS, A. 2007. Conditional func-
tional dependencies for data cleaning. In: Inter-
national Conference on Data Engineering, 23rd,
Istanbul, 2007. Proceedings… IEEE, p. 756-755.
http://doi.ieeecomputersociety.org/10.1109/
ICDE.2007.367920

BOUCHOU, B.; CHERIAT, A.; HALFELD-FER-
RARI, M.; LAURENT, D.; LIMA, M.A.V.; MU-
SICANTE, M. 2007. Efficient constraint valida-
tion for updated XML databases. Informatica,
31(3):285–310.

BOUCHOU, B.; HALFELD-FERRARI, M.; LIMA,
M.A.V. 2011. Attribute Grammar for XML In-
tegrity Constraint Validation. In: Database and
Expert Systems Applications, 22nd, Toulou-
se, 2011. Proceedings… Toulouse, 6860:94-109.
http://dx.doi.org/10.1007/978-3-642-23088-2_7

BOUCHOU, B.; HALFELD-FERRARI, M.; LIMA,
M.A.V. 2012. A Grammarware for the Incremen-
tal Validation of Integrity Constraints on XML
Documents under Multiple Updates. Transac-
tions on Large-Scale Data and Knowledge-Centered
Systems, 6:167-197.

 http://dx.doi.org/10.1007/978-3-642-34179-3_6
BUNEMAN, P.; FAN, W.; SIMEON, J.; WEINS-

TEIN, S. 2001. Constraints for Semistructured
Data and XML. ACM Special Interest Group on
Management of Data, 30(1):47-54.

 http://doi.acm.org/10.1145/373626.373697

117Journal of Applied Computing Research, vol. 3, n. 2, p. 103-117, Jul/Dec 2013

Lima, Rezende and Oliveira | Conditional functional dependencies validation for XML data

DEUTSCH, A.; TANNEN, V. 2005. XML Queries
and Constraints, Containment and Reformula-
tion. Theoretical Computer Science, 336(1):57-87.
http://dx.doi.org/10.1016/j.tcs.2004.10.032

FAN, W. 2008. Dependencies revisited for impro-
ving data quality. In: ACM SIGMOD-SIGACT-
-SIGART Symposium on Principles of database
systems, 27th, Vancouver, 2008. Proceedings…
ACM, p. 159-170.

 http://doi.acm.org/10.1145/1376916.1376940
FAN, W.; GEERTS, F.; JIA, X.; KEMENTSIETSIDIS,

A. 2008. Conditional functional dependencies
for capturing data inconsistencies. ACM Tran-
sactions on Database Systems, 33(2):1-48.

 http://doi.acm.org/10.1145/1366102.1366103
GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSI-

DES, J. 1994. Elements of Reusable Object-Oriented
Software. Delhi, Pearson Education, 395 p.

GIRE. F.; IDABAL, H. 2010. Regular tree patterns: a
uniform formalism for update queries and func-
tional dependencies in XML. In: EDBT/ICDT
Workshops, Lausanne, 2010. Proceedings… Lau-
sanne, p. 18-1, 18-9.

 http://doi.acm.org/10.1145/1754239.175 4260
HARTMANN, S.; TRINH, T. 2006. Axiomatising

functional dependencies for XML with frequen-
cies. In: International Symposium FoIKS, 4th, Bu-
dapest, 2006. Proceedings… Budapest, 3861:159-
178.

KARLINGER, M.; VINCENT, M.; SCHREFL, M.
2009. Inclusion Dependencies in XML: Exten-
ding Relational Semantics. In: International
Conference on Database and Expert Systems
Applications, 20th, Linz, 2009. Proceedings…
Linz, 5690: 23-37. http://dx.doi.org/10.1007/978-
3-642-03573-9_3

KUCHANA, P. 2004. Software Architecture Design
Patterns in Java. Boston, Auerbach Publishers,
492 p. http://dx.doi.org/10.1201/9780203496213

LIU, J.; LI, J.; LIU, C.; CHEN, Y. 2011. Discover
dependencies from data: a review. IEEE Trans-
actions on Knowledge and Data Engineering,
24(2):251-264.

 http://dx.doi.org/10.1109/TKDE.2010.197
LIU, J.; VINCENT, M.; LIU, C. 2003. Functional De-

pendencies, From Relational to XML. Lecture
Notes in Computer Science, 2890:531-538.

 http://dx.doi.org/10.1007/978-3-540-39866-0_51
MA, S.; FAN, W.; BRAVO, L. 2014, Extending inclu-

sion dependencies with conditions. Theoretical
Computer Science, 515:64-95.

 http://dx.doi.org/10.1016/j.tcs.2013.11.002

SHAHRIAR, M.S.; LIU, J. 2008. Preserving Func-
tional Dependency in XML Data Transforma-
tion. Advances in Databases and Information
Systems. In: East European Conference, AD-
BIS 2008, 12th, Pori, 2008. Proceedings… Lecture
Notes in Computer Science, 5207:262-278.

 http://dx.doi.org/10.1007/978-3-540-85713-6_19
SHAHRIAR, M.S.; LIU, J. 2009. On the performances

of checking XML key and functional dependen-
cy satisfactions. In: Confederated International
Conferences, Vilamoura, 2009. Proceedings... On
the Move to Meaningful Internet Systems: OTM,
p. 1254-1271. Available at: http://link.springer.
com/chapter/10.1007%2F978-3-642-05151-7_37.
Accessed on: December 2nd, 2013.

TAN, Z.; ZHANG, L. 2011. Improving XML data
quality with functional dependencies. In: Inter-
national Conference on Database Systems for
Advanced Applications, 16th, Hong Kong, 2011.
Proceedings… Hong Kong, p. 450-465. Available
at: http://dl.acm.org/citation.cfm?id=1997348.
Accessed on: December 3th, 2013.

TRINH, T. 2008. Using Transversals for Discovering
XML Functional Dependencies. In: Internatio-
nal Symposium FoIKS, 5th, Pisa, 2008. Proceedin-
gs… Pisa, p. 199-218.

 http://dx.doi.org/10.1007/978-3-540-77684-0_15
VINCENT, M.; LIU, J. 2005. Checking functional

dependency satisfaction in XML. In: Internatio-
nal XML Database Symposium (XSym05), Tron-
dheim, 2005. Proceedings… Trondheim, p. 4–17.
http://dx.doi.org/10.1007/11547273_2

VO, L.T.H.; CAO, J.; RAHAYU, W. 2011. Discove-
ring Conditional Functional Dependencies in
XML Data. In: Australasian Database Conferen-
ce, 22nd, Perth, 2011. Proceedings… Perth, p. 143-
152. Available at: http://crpit.com/confpapers/
CRPITV115Vo.pdf. Accessed on: December 2nd,
2013.

WANG, J.; TOPOR, R. 2005. Removing XML data
redundancies using functional and equality-ge-
nerating dependencies. In: Australasian Data-
base Conference, 16th, NewCastle, 2005. Procee-
dings… NewCastle, p. 65-74. Available at: http://
crpit.com/confpapers/CRPITV39Wang.pdf. Ac-
cessed on: December 2nd, 2013.

Submitted on January 6, 2014
Accepted on April 29, 2014

