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Introduction

Detection of faults in rotating machinery is 
an important engineering task (Randall, 2011). 
Automatic fault diagnosis of complex machin-
ery has economical and security related ad-
vantages. Identifying a fault in its initial stage 
allows the early replacement of damaged parts 
(Wandekokem et al., 2011). This type of predic-
tive maintenance is better than the preventive 
counterpart, which replaces parts that are not 
necessarily defective. Supervised learning is 
a machine learning approach widely used 
in automatic fault diagnosis (Xia et al., 2012; 
Liu, 2012; Wu et al., 2012).

A generic framework for automatic fault 
diagnosis is presented in Figure 1. In this fig-
ure, the first stage of the development is the 
raw signal acquisition. The present work uses 
the Case Western Reserve University Bearing 
Data Center as raw signal (CWRU, 2014). In 
the feature extraction at the signal level three 
feature extraction methods were used, statis-
tical in time and frequency domain, wavelet 
package analysis and complex envelope spec-
trum, grouped in a pool of features. No fea-
ture extraction at the features level was made. 
The feature selection can improve the classifier 
algorithms in performance and quality simul-
taneously. Currently, several feature selection 
algorithms have been proposed, not only to 
improve quality and performance, but mainly 
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Figure 1. Generic framework for automatic fault 
diagnosis.
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to reduce the time of the selection (Bermejo 
et al., 2011; Yu and Liu, 2003; Hsu et al., 2011). 
The main goal of this work is to present a fast 
feature selection algorithm, which reduces the 
features of the system without loss of the so-
lutions quality. The classifier model used was 
the K-Nearest Neighbor (K-NN) algorithm 
(Cover and Hart 1967).

The following sections explain raw data 
acquisition, feature extraction techniques, 
traditional feature selection methods, state 
of the art of feature selection methods, fast 
algorithm as innovation, comparative experi-
ments and conclusions.

Raw data acquisition

This work uses vibrational signals acquired 
from several bearing situations. The Case West-
ern Reserve University Bearing Data Center 
(CWRU 2014) was chosen due to its public-
ity and quality. The database is organized as 
MATLAB/Octave processable vibration signal 
files, with all necessary parameters attached, 
which are needed to calculate the feature mod-
els. The machine condition differs with respect 
to the fault severity, bearing manufacturer, 
motor load, sensor position and acquisition 
frequency and duration. Figure 2 shows the 
schematic setup of the workbench used for the 
fault diagnosis experiments: motor, torque en-
coder, dynamometer. The three different posi-
tions of the accelerometers are shown. 

This dataset is composed of vibratory sig-
nals of normal and fault bearings extracted 
from a 2 hp reliance electric motor. The faults 
were introduced at a specific position of the 
bearing, using an electro-discharging machin-
ing with fault diameters of 0.007, 0.014, 0.021 
and 0.028 inches. A dynamometer induced 

loads of 0, 1, 2 and 3 hp, changing the shaft 
rotation from 1797 to 1720 rpm. One model 
of bearing was used on the drive end and an-
other was used at the fan’s end. Three accel-
erometers collected the vibratory data, placed 
on the drive’s end, fan’s end and the base of 
the motor. Only few data files contain the base 
plate data. So the signals collected by this ac-
celerometer were not used in the experiments. 
Neither 0.0028 inch fault diameter signal files 
were used because they do not have any signal 
from the fan’s end.

As done in other works (Xia et al., 2012; 
Liu, 2012; Wu et al., 2012), the signals were split 
in several parts before the feature extraction, 
aiming at a better classification performance 
estimation. The signals were split in 15 parts. 
Preliminary experiments showed that this was 
the maximum possible division without con-
siderable loss of accuracy. The amount of sam-
ples acquired is 2295. The classes can identify 
if both bearings are normal (1); if the defective 
bearing is in drive’s end or in fan’s end (2); the 
location of the failure in the bearing, ball, in-
ner race and outer race (3); the severity of the 
failure in 0.007, 0.014 and 0.021 inches (3); and 
the motor load, 0, 1, 2 or 3 hp (4). The number 
of classes is (1+2*3*3)*4 = 76.

Feature extraction

The signals collected from the machinery 
are not directly usable for diagnosis, so it is 
necessary to extract static features. As rep-
resentative models we use those mainly ob-
served in the considered literature, statistical 
features from the time and frequency domains, 
wavelet packet energy and complex envelope 
magnitudes. This feature extraction models 
are explained in the following subsections.

Figure 2. CWRU testbed for bearing faults diagnosis.
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Statistical features

Usable information can be extracted from 
vibrational signals in the time domain ac-
quired by accelerometers using statistical tech-
niques. These statistical techniques can also be 
applied to the signals in the frequency domain 
using Fourier analysis to transform the original 
signal. As a representative set, this work uses 
those features used in Xia et al. (2012).  The set 
is composed of ten features from the time do-
main and three features from the Fourier trans-
form generated frequency domain. As soon as 
the signal in two domains is available, the cal-
culus has a very low computational cost.

Table 1 presents the definition of statisti-
cal features in the time domain as root mean 

square (RMS), square root of the amplitude 
(SRA), kurtosis value (KV), skewness value 
(SV), peak-peak value (PPV), crest factor (CF), 
impulse factor (IF), margin factor (MF), shape 
factor (SF) and kurtosis factor (KF). Table 2 
presents the definition of statistical features 
in the frequency domain as frequency center 
(FC), RMS frequency (RMSF) and root vari-
ance frequency (RVF).  Considering two bear-
ings, drive end and fan end, the number of sta-
tistical features is (10+3)*2 = 26.

Wavelet package analysis

Dual domain analysis methodologies that 
extract features from the time-frequency rep-
resentation are represented in this work by 

Table 1. Time domain statistical features.

Table 2. Frequency domain statistical features.
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wavelets (Gao and Yan, 2011). Posterior to the 
classical wavelet decomposition, the set of vi-
bration analysis techniques has been enriched 
by the wavelet packet analysis (Coifman and 
Wickerhauser, 1992), which allows a more 
flexible decomposition guided by informa-
tion theory. Work describing the CWRU data 
by wavelet packets is found in Chebil et al. 
(2009), Wei et al. (2011), Xia et al. (2012), Luo 
et al. (2013) and Liu (2012). For each purpose 
the wavelet family, the mother wavelet within 
this family and the decomposition depth have 
to be chosen. This work follows the procedure 
proposed in Xia et al. (2012), which uses as the 
mother wavelet Daubechies 4 and refining is 
done down to the fourth decomposition level. 
An application to rotating machinery with 
an extended description on how to select the 
appropriate wavelet base is described in Liu 
(2005). However, it is not possible to modify 
the tree structure by optimization of the infor-

mation contents of the leave nodes since it is 
necessary to obtain corresponding feature vec-
tors for each sample. This means that a tree 
structure optimization for a normal machine 
condition could generate a wavelet packet tree 
that is different from the tree generated by a 
faulty condition thus not permitting the direct 
comparison of the features.

Figure 3 shows two comparative exam-
ples extracted from real signals. Only the leaf 
nodes were used to calculate the features of 
two bearings. The total number of wavelet 
package analysis features is 16*2 = 32.

Complex envelope analysis

There are some frequency groups involved 
in a typical bearing fault. First there is the nat-
ural high natural frequency (resonance) of the 
ball when hitting the defective region which 
can be located on itself, the cage, interior or 

Figure 3. (a) 0.007 inch, 0 hp, inner race fault signal decomposition. (b) 0.021 inch, 3 hp, inner race fault 
signal decomposition. Wavelet packet tree of depth j = 4 for two inner race faults, varying with respect to 
the fault severity and work load. Only the first 0.1s of a single sample is processed and shown in order not 
to overburden the graph. 

(a)

(b)
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exterior raceway. Low frequencies are contrib-
uted mainly by shaft rotation related faults, 
like unbalance or misalignment. It is necessary 
to establish a model of the bearing to under-
stand these frequency groups. 

The structure of a rolling bearing allows to 
establish a model of possible faults. The bear-
ings, when defective, present characteristic 
frequencies depending on the localization of 
the defect (Ragul’skis and Yurkauskas, 1989; 
Mobley, 1999; Rieger and Crofoot, 1977). There 
are four characteristic frequencies at which 
faults can occur. Knowing the shaft rotational 
frequency FS, the fault frequencies that can be 
calculated are the fundamental cage frequency 
FC, ball pass inner raceway frequency FBPI, 
ball pass outer raceway frequency FBPO and 
the ball spin frequency FB. For the ball bear-
ings with angular contact with the cage, the 
outer ring is static and the inner ring rotates 
at the shaft speed. Figure 4 illustrates a basic 
model of a bearing with the rolling elements, 
the inner and outer raceways and the cage.

For the complex envelope analysis, first a 
high pass filter is applied in order to elimi-
nate the influence of the low frequency vibra-
tions caused by noise, unbalance and mis-
alignment. Subsequently, an analytical signal 
is calculated by applying the Hilbert trans-
form to the original signal and adding it in 
quadrature to it. The magnitude of the Fouri-
er transform of the analytical signal translates 
the characteristic bearing faults frequencies 
to the low frequency band. The final features 
are the narrow band energy around the ex-
pected fault frequencies and their harmonics. 
Six harmonics were calculated for each of the 
two bearings considered. 

This kind of feature extraction needs a spe-
cific feature for each fault, because it tries to 
identify high energy where the faults mani-
fest themselves. This work intends to identify 
three types of faults, ball, inner race and outer 
race, using six harmonics for two bearings. 
Considering that each bearing produces fea-
tures to identify failures in the other one, be-
cause they have different dimensions, the total 
number of complex envelope analysis features 
is 3*6*2*2 = 72.

Feature selection

When automatic diagnosis systems or any 
other classification task extract a large amount 
of features, feature selection techniques can 
improve the application in both performance 
and quality of the results. The performance 
increment occurs because the classifier needs 
less memory and processor power to be 
trained and to identify a class. The quality of 
the results is improved because it is possible 
that some redundant or irrelevant features 
were extracted on the feature extraction stage 
(Kudo and Sklansky, 2000; Guyon and Elisse-
eff, 2003). A feature selection algorithm is basi-
cally composed of a selection criterion and a 
search strategy. There are two main classes of 
feature selection techniques. The wrapper ap-
proach in feature selection consists of taking 
the estimated performance of a classifier as the 
proper feature selection criterion. The perfor-
mance criterion in the overwhelming part of 
past and contemporary work is the estimat-
ed accuracy of the classifier. This means that 
those features during the search are labeled 

Figure 4. Sectional view of a bearing model (Mobley, 1999).
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as good, what minimizes the estimated error. 
The filter approach uses different criteria to 
judge a feature set or judge the performance 
of the classifier. Usually the benefit of a selec-
tion filter is its speed, its drawback is a pos-
sible inferior performance compared to that of 
a wrapper.  Finding the best combination of 
features is a combinatorial problem and it is 
necessary to use heuristics when the number 
of features is large.

Sequential Forward Selection (SFS) (Guyon 
and Elisseeff, 2003) is a well known wrapper 
technique. It starts with an empty set. For each 
single feature, a criterion, like accuracy for in-
stance, is calculated and this feature is ranked. 
The best ranked feature is added to the subset 
of features. After this initial step, each remain-
ing feature is evaluated with the current set, 
ranked and the best one is chosen to be added 
to the set. This process is repeated until the 
desired number of features is achieved. This 
algorithm can be used with both wrapper and 
filter criterion. 

The Greedy Random Feature Selection Al-
gorithm

Recent works present algorithms faster 
than SFS (Bermejo et al., 2011; Yu and Liu, 2003; 
Hsu et al., 2011). These works commonly try 
to reduce the number of wrapper evaluations. 
The main goal is reducing the number of fea-
tures without loss of quality. One approach is 
mixing filter and wrapper techniques (Berme-
jo et al., 2011; Hsu et al., 2011). The algorithm 
present in this work is simple, faster, easy to 
implement even in a parallel version. The hy-
pothesis of this work is that filter techniques 
do not necessarily represent a good strategy to 
make the preliminary selection, and a repeti-
tive random choice can achieve good results. 
The experimental results show that a random 
algorithm can be applied without loss of quali-
ty. The performances of the random algorithm 
and of the SFS were compared.

The Greedy Random Feature Selection Algo-
rithm (GRFS), in its simplest form, initializes the 
feature subset with a random feature and evalu-
ates it. After this initial step, the GRFS selects an-
other feature, also randomly, adds this feature 
to the subset and evaluates it again. If evalua-
tion does not improve, this feature is discarded. 
If it improves, the feature is added to the subset. 
In each interaction, one feature is chosen from 
the subset, also randomly, to be taken out of the 
subset, which is evaluated. If evaluation does 
not improve, this feature is re-added to the set, 
or else, it is permanently discarded.

To test this feature selection algorithm, ex-
periments were made using K-Nearest Neigh-
bor (K-NN) classifier with the 130 features 
extracted from CWRU bearing data by the ex-
traction models presented. The parameter K 
was set to one. This classifier was chosen due 
to its simplicity and speed with the dataset 
used. The metric of quality was accuracy. As 
in Bermejo et al. 2011, 5 fold cross-validation 
was used in all experiments. The first experi-
ment runs the K-NN ten times with all 130 
features. The values found were average of 
94.67%, minimum of 93.81%, maximum of 
95.16% and standard deviation of 0.37%.  The 
second experiment was running the GRFS ten 
times, and the accuracy found was an average 
of 96.60%, minimum of 94.94%, maximum 
of 97.38 % and standard deviation of 0.70%. 
The number of features was in average 26.6, 
minimum 21, maximum 34 and standard de-
viation of 3.84. These experiments show that 
GRFS can reduce the number of the features 
without loss of accuracy, for this data. The 
worse accuracy of GRFS was higher than the 
average of the system with the complete pool 
of features. 

A dangerous drawback of the GRFS is that 
when it removes a feature, that feature never 
comes back. To minimize that, a slight modi-
fication was made in the GRFS. A parameter 
called chance was added, so each feature had 
chances to improve the features subset. Figure 
5 shows the accuracy varying the number of 
chances and Figure 6 shows the number of 
features varying the number of chances. For 
each value of chance ten experiments were 
executed. As expected, the accuracy average 
tends to grow with the number of chances. 
On the other hand, the number of features did 
not grow much.

To compare the results of GRFS, ten ex-
periments with SFS were made and the results 
are presented in Figure 7. This figure shows 
that the SFS needs approximately 50 features 
to achieve its higher average of accuracy, and 
did not achieve 98% in average. No execution 
of the GRFS used more than 45 features, the 
mean was never higher than 97% for number 
of chances greater than 2. 

The GRFS is much faster than the SFS, so it 
is possible to run it several times and choose 
the best result. Based on this fact, another lit-
tle modification was made, adding another 
parameter called repetition. This parameter 
sets how many times the previous form of the 
GRFS will execute, and then, the algorithm 
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will choose the best result. Experiments with 
10 repetitions with the parameter chance set as 
one were made. The final results after ten ex-
ecutions were in accuracy average of 97.55%, 
minimum of  96.82%, maximum of 97.91%, 
and standard deviation of 0.31%. In number of 

features the final results were average of 24.6, 
minimum of 18, maximum of 35, and stand-
ard deviation of 6.29. Comparing the number 
of features, these results are almost compat-
ible with the SFS, but extremely faster to be 
achieve, even with ten repetitions.

Figure 5. Accuracy varying the number of chances.

Figure 6. Number of features varying the number of chances.

Figure 7. Accuracy of SFS.
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The final version of the GRFS is shown in 
Algorithm 1.

Conclusions

This work presented a fast feature selec-
tion algorithm and showed comparative ex-
periments for testing its practical utilization. 
The experiments were based on a generic 
framework for diagnosis system develop-
ment. The raw signals were acquired from 
CWRU (2014) bearing data center. Three 

models of feature extraction were used. The 
features extracted were combined in a pool 
of features. The GRFS algorithm presented 
proved capable of reducing the number of 
features improving the accuracy of  whole 
system. The SFS algorithm needs the number 
of features as a parameter before its execution 
and has high cost to find the best number of 
features. The GRFS does not need the final 
number of features as a parameter and can 
achieve good results faster than the SFS when 
the number of features is compared.

Algorithm 1. The Greedy Random Feature Selection Algorithm.
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The GRFS proved to be a useful algorithm 
and has no restrictions to be used as filter or 
wrapper approach. It can be used as a param-
eter to compare the performance and quality 
of the results to test new methods of feature 
selection. It can also be used to generate ini-
tial solutions (Bermejo et al., 2011) for more so-
phisticated heuristics.
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