
Journal of Applied Computing Research, 3(1):19-33
January-June 2013
© 2013 by Unisinos - doi: 10.4013/jacr.2013.31.03

Introduction

Mark Weiser’s classic article (Weiser, 1991),
considered the precursor of Ubiquitous Com-
puting, describes the basic assumptions of this
computational paradigm: ubiquity and trans-
parency. These assumptions generate several
challenges related to user access to computing

environment, anywhere, any time, with any
device, non-intrusively, keeping the users’
focus on their activities. In this perspective,
computational systems must interact in an au-
tonomic way, no matter where the user is, con-
stituting a highly distributed, heterogeneous,
dynamic and mobile environment (Costa et al.,
2008; Caceres and Friday, 2012).

Toward a distributed architecture for context
awareness in ubiquitous computing

João Lopes
Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 950, 91501-970, Porto Alegre, RS, Brazil
jlblopes@inf.ufrgs.br

Márcia Gusmão, Cauê Duarte, Patrícia Davet
Universidade Federal de Pelotas. Rua Gomes Carneiro, 1, 96010-610, Pelotas, RS, Brazil
mzgusmao@inf.ufpel.edu.br, cduarte@inf.ufpel.edu.br, pdavet@inf.ufpel.edu.br

Rodrigo Souza
Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 950, 91501-970, Porto Alegre, RS, Brazil
rssouza@inf.ufrgs.br

Ana Pernas, Adenauer Yamin
Universidade Federal de Pelotas. Rua Gomes Carneiro, 1, 96010-610, Pelotas, RS, Brazil
marilza@inf.ufpel.edu.br, adenauer@inf.ufpel.edu.br

Cláudio Geyer
Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 950, 91501-970, Porto Alegre, RS, Brazil
geyer@inf.ufrgs.br

Abstract. The applications in Ubiquitous Computing (UbiComp) environments must be aware of their
contexts of interest and adapt to changes in them. Thus, a major research challenge in the area of UbiComp is
related to context awareness. Considering the high distribution, heterogeneity, dynamism, and mobility of
ubiquitous environments, this paper presents an architectural model for context awareness, called EXEHDA-
UC (Execution Environment for Highly Distributed Applications - Ubiquitous Context awareness). The
proposal includes elements to support contextual data acquisition, actuation in the environment, and
processing of contextual information. We consider that the main contribution of this work is an architecture
that supports the managing of the acquisition, storage, and processing of context data, in a distributed way,
independently of the application, in an autonomic and rule-based perspective. To assess the functionalities of
the EXEHDA-UC, we present a case study, highlighting the prototypes developed, technologies employed,
and tests carried out.

Keywords: ubiquitous computing, context awareness, distributed architecture.

20 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

In this sense, one of the main research prob-
lems in the area of UbiComp is context aware-
ness, which refers to the ability of applications
to make changes in the characteristics of the
ubiquitous environment, which are of its in-
terest, and respond to these changes through
an adaptation process (Silva et al., 2012). This
class of computational systems, reactive to the
context, opens perspectives for the develop-
ment of richer, elaborate and complex appli-
cations, exploring the dynamism of modern
computational infrastructures and user mobil-
ity (Kakousis et al., 2010).

The literature review indicates several chal-
lenges in the support of context awareness for
ubiquitous applications, including: (i) context
acquisition from distributed and heterogene-
ous sources, (ii) context processing and actua-
tion in the environment, and (iii) context dis-
semination to interested users in a distributed
and timely way (Bettini et al., 2010; Bellavista
et al., 2012; Knappmeyer et al., 2013).

The main contribution of this work is the
proposal of a software architecture that offers
to applications support for acquisition, stor-
age, and processing of contextual information,
as well as for the actuation in the environment,
in a distributed way, independent of applica-
tions, in a rule-based autonomic perspective,
and with support to mobility. Considering

that context awareness service of EXEHDA
middleware (Lopes et al., 2012) does not ad-
dress these features, EXEHDA-UC contributes
particularly to the Context Recognition and
Adaptation Subsystem of EXEHDA.

The paper is organized as follows. The
second section presents an overview of EX-
EHDA middleware services. The third section
presents an overview of EXEHDA-UC pro-
posal. The fourth section describes the soft-
ware architecture proposed for EXEHDA-UC.
The fifth section presents a case study and an
evaluation of the applications. The sixth sec-
tion discusses the related work. Finally, the
last section presents the concluding remarks.

EXEHDA middleware overview

EXEHDA middleware was conceived to
support the execution of ubiquitous applica-
tions.The main properties of EXEHDA appli-
cations are: distributed, mobile, adaptive and
reactive to the context. EXEHDA is composed
of several integrated services that are concep-
tually organized in subsystems: data and code
ubiquitous access, uncoupled spatial and tem-
poral communication, large-scale distribution,
context recognition and adaptation. The sub-
system integration is shown in Figure 1 (Au-
gustin et al., 2008).

Figure 1. EXEHDA subsystems.

21Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

Regarding communications, EXEHDA
currently provides, through the Dispatcher,
WORB, and CCManager services, three types
of communication primitives, each one ad-
dressing a distinct abstraction level.

The Dispatcher Service corresponds to the
lowest abstraction level, providing message-
based communications. Message delivering is
done through per-application channels, which
may be configured to ensure several levels of
protection for the data being transmitted. Pro-
tection levels range from data integrity, using
digital signatures, to privacy through encryp-
tion mechanisms. Additionally, the Dispatcher
Service uses a checkpointing/recovery mecha-
nism for the channels, which is activated when
a planned disconnection is in course. This fea-
ture may or may not be activated by the upper
communication layers depending on its par-
ticular demands.

In order to make the development of dis-
tributed services easier, EXEHDA also provides
an intermediary solution for communications,
based on Remote Method Invocations, through
the WORB Service. The programming model
is similar to Java RMI, but optimized to ubiq-
uitous requirements. More specifically, WORB
remote method invocations, differently from
Java RMI, do not require that the device keep
connected during the entire execution of the
method on the remote node. Instead, WORB
was built on the functionality provided by the
Dispatcher Service, including a per-invocation
ID. The invocation ID remains valid during the
disconnection, allowing the WORB to re-sync
with the remote node after reconnection and
obtain the returned values from the invocation.

At a higher level, the CCManager Service
provides tuple-space based communications.
It builds on the WORB Service, which also
handles planned disconnections, providing to
applications an anonymous and asynchronous
communication support. This model is pro-
vided in the CCManager Service and is better
suited to scenarios in which application com-
ponents might migrate among nodes, since it
does not require both sides to coexist for the
communication to take place.

From the middleware point of view, envi-
ronment resources fit in one of two categories:
processing node or specialized resources. The
former corresponds to the nodes, which effec-
tively execute and whose access is managed
by the middleware. The latter corresponds to
specialized devices, e.g. printers, scanners,
etc., whose access is not done through one of

the middleware services, but through the use
of some specific libraries. Although not man-
aged by EXEHDA, the specialized devices are
also cataloged in the CIB Service in order to
allow applications to locate and use them.

The Discoverer Service is in charge of find-
ing specialized resources in the environment
based on an abstract definition of the resource.
Typically, this service interacts with the CIB
Service from its own cell, aiming at satisfying
the resource discovery request in the scope
of the local cell. When the local resources fail
to fulfill the request, the Discoverer Service
interacts with the Resource Broker service of
the neighbors’ cells. The strategy adopted in
this extra-cell search is characteristic of the
particular Discoverer Service instance in use.
These services employ a language to describe
resources and its interfaces are standardized.
Since the middleware does not manage spe-
cialized resources, the results of a Discoverer
Service search do not imply resource alloca-
tion or even resource reservation.

The Monitor Service implements a monitor-
ing scheme based on sensors, which employs
indexes to describe specific aspect of the en-
vironment. These sensors can be customized
through parameters. The whole set of sensors
installed on a node is part of the node descrip-
tion information registered in the CIB Service.
The data generated by each sensor is gathered
by the Monitor Service, which typically runs
on the same node where sensors are installed.
The gathered data is published by the Monitor
Service to a Collector Service, which typically
runs on the base-node.

Both the gathering of data by the sensors
and the publication to the Collector Service by
the Monitor occurs in discrete multiples of a
per-node configured quantum. The quantum
parameter allows the resource owner to con-
trol, externally to the middleware, the degree
of intrusion of the monitoring mechanism in
the host. After a quantum of time expires, the
Monitor Service executes a pooling operation
over the active sensors in the node. Then, it
applies the publishing criteria specified for
the sensor data, determining, or not, the gen-
eration of a publishing event for that sensor.
Thus, the events generated after a quantum
expiration are grouped into a single message,
reducing the amount of data that the Monitor
has to transmit to the Collector.The Collector
Service aggregates information from several
monitors in the cell and forwards them to the
registered consumers.

22 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

EXEHDA-UC proposal overview

The model proposed for EXEHDA-UC
provides dynamic handling of context infor-
mation, while the ubiquitous applications
are been executed. For this, in EXEHDA-UC
we employed a rule-based and event-driven
approach that enables the possibility of asso-
ciating processing rules to the contexts of in-
terest, which can be triggered automatically
whenever an event occurs. The event, in our
view, relates to changes in the context status.
Figure 2 illustrates the approach proposed for
EXEHDA-UC.

The autonomic approach is also a key as-
pect in the design of the proposal, correspond-
ing to the ability to construct contexts inde-
pendently of the application execution, which
can be composed by the context data obtained
from different sensors distributed in cells
forming the ubiquitous environment.

A usage scenario for this approach is de-
scribed below and corresponds to an applica-
tion related to LDAS - Didactic Laboratory of
Seed Analysis:

Application: Control of LDAS Physical En-
vironment Condition.
Component: Temperature Control in the
Seed Germinators Room.
Context of Interest: temperature.
States of Context: temperature values col-
lected.

Sensors: digital temperature sensor based
on the 1-wire technology.
Event: temperature outside the boundary
(>= 27º C or <= 15º C).
Rule:

rule “Warning Light”
when

Verify(LabRoom.Temperature >= 27
or LabRoom.Temperature <= 15)

then
Activate(LabRoom.Light)

end
Actuation: addressable electronic key
based on the 1-wire technology (the rule
triggers the software component that ac-
tivates a warning light in the room of the
person in charge for LDAS).

EXEHDA-UC Software Architecture

The EXEHDA-UC encompasses two types
of servers: Border Server, responsible for the
interaction with the environment through
sensors and actuators, and Context Server,
responsible for processing the contextual in-
formation. These servers are located in cells of
the ubiquitous environment managed by EX-
EHDA, where each cell has one Context Server
and can contain several Border Servers.

The proposed architecture for EXEHDA-
UC enables communication: (i) among Border
Servers and Context Servers, (ii) among Con-

Figure 2. Rule-based and event-driven approach proposed for EXEHDA-UC.

23Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

text Servers located in different cells of ubiq-
uitous environment managed by EXEHDA,
and (iii) with other middleware services, or
applications. An overview of this architecture
is shown in Figure 3, in which the components
are mapped over the ubiquitous environment.

The EXEHDA-UC architecture can ac-
quire contextual information in an autonomic
way, as well as allow remote actuation in the
environment through electromechanical de-
vices. In a ubiquitous environment different
information is scattered, being necessary to
be collected through sensors geographically
distributed for the users to have access to the
information. This collected data should also be
stored for further processing by both middle-
ware as applications.

The description of EXEHDA-UC, present-
ed in the next sections, is organized based on
it servers and corresponding features, and
the necessary associations between them, and
with the other services of the EXEHDA mid-
dleware carried out.

Border server

The proposed architecture for the Border
Server includes three modules targeted to: (i)
manage sensor networks, (ii) make publications,
and (iii) manage actuator networks. A detailed
view of the architecture is shown in Figure 4.

Sensing Module provides handling of sen-
sor networks, enabling the individualization
of processing by sensor. It covers aspects from
physical management (interfaces, reading fre-
quency) to computational normalization (vali-
dation, translation) of the collected values.
It also enables publication of the information
collected by sensor networks in Context Serv-
er. This module comprises six components,
which are described below.

Operating Parameters of Sensors Component
specifies the driver to be used for reading dif-
ferent sensors, as well as the agenda to data
acquisition. This agenda handles sensors in-
dividually, allowing the specification of peri-
odic readings, linked to dates and/or specific
times. This component is defined by the user
in the Context Server, using a YAML language
(http://www.yaml.org). The specifications
available in the Repository of Context are used
and, once ready, the YAML file is transferred
to the Border Server.

Based on the Operating Parameters of Sen-
sors, the Scheduler Component triggers read-
ings, considering the user’s application inter-
ests. The Scheduler uses the clock of the Border
Server to trigger its procedures, being possible
to specify the frequency of occurrence. Each
activation triggers a YAML parser to interpret
the sensor which should be read and activated
by the corresponding driver.

Figure 3. Ubiquitous environment.

24 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

The sensor’s driver is responsible for the
acquisition of physical value measured by the
sensor. It is usual that each type of sensor has
a specific form of access to data acquisition.
The strategy of encapsulating the driver op-
eration aims to prevent that the operational
differences of each driver may have an im-
pact in the other layers of software architec-
ture. Among other aspects this encapsulation
improves the maintenance (replacement of
sensors, updating drivers). The driver of each
sensor is individualized by an identification
code, allowing the addition of a new driver
or the modification of an old driver, without
further specification.

The Validator Component assesses whether a
particular data collection should be published
or not, using criteria specified by user-defined
rules. These criteria are based on rules, for ex-
ample, a rule may state that only values whose
variance is greater than 5% from the previous
reading should be published, or values that are
in a certain range should be published. The rule
is identified in the Operating Parameters of Sen-
sors Component, considering the sensor ID (IDs).

The Translator Component performs the ad-
equacy of the collected data to the nature of
the user application, also by a rule. For ex-
ample, temperature ranges can be converted
into descriptions such as “High”, “Medium”,
“Low”, through a procedural rule. This com-
ponent helps to optimize the volume of data
transferred between servers, also increasing
the readability of the collected data.

The Instantaneous Reading Component ena-
bles a sensor reading, considering the appli-
cation’s demand at any time. The requests
can come from user’s applications or Context
Servers, as a result of rules implementation. It
employs an Enterprise Service Bus (ESB) for
receiving asynchronous requests and, consid-
ering the sensor ID, triggers the corresponding
driver.

The Local Rules Handler Component proc-
esses contingency rules intended to prevent
the devices involved from reaching critical
states. These rules act on the management
mechanism of actuation, enabling or disabling
actuators. This component is activated when-
ever the reading of a particular sensor occurs,

Figure 4. Border server.

25Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

acquiring high importance when the commu-
nication with the Context Server is interrupted
by problems in the network infrastructure.

The Publication Module is responsible for co-
ordinating the main data flow between Border
Servers and the Context Server, promoting the
publication of all collected data and ensuring a
Local Persistence in the periods when the publi-
cation is frustrated. This module is composed
by Publisher Component, which interoperates
with the Acquisition Module of the Context
Server, performing submissions of collected
data. These submissions are made using the
ESB of the Acquisition Module, individualized
by application. Depending on the nature of the
application, for security, data are transferred
in an encrypted way.

The Actuation Module is responsible for
managing the actuators. This module is com-
posed by the Instantaneous Actuation Compo-
nent, which receives asynchronous commands
at any time, via an ESB. These commands are
originated from the Context Server, as a result
of the execution of a rule, as well as from a user
application. The parameters used are the ID of
the actuator and the corresponding operation
patterns (duration, power activation, etc...),
which are passed to the Supervisor Component
for processing. The Supervisor binds actuation
commands from three different sources: the
regular actuation, the instant actuation, and
those from the Local Rules Handler. Once the
Supervisor has received the parameters to con-
trol the actuation, it can activate the required
driver for the actuator that is being managed.

In order to identify anomalous behaviour
related to the management of the actuators, the
Supervisor has a specification for actuator (IDa)
of how many times for a unit of time transi-
tions in the state of the actuator are expected to
occur. The objective is to identify potential con-
flicts between rules in the Context Server and
rules of contingency in the Local Rules Handler
Component, as well as unconformities between
instant actuation commands, triggered by the
user, and active rules in the servers. Also, this
component handles the parameters for acti-
vating the actuators, implementing through
drivers the procedures of activation and deac-
tivation, control of operational power, validity
time of actuation, among others.

The actuator’s Drivers have a similar pur-
pose to the sensor’s Drivers, i.e., they encapsu-
late the procedures specific to each actuator,
most often employing libraries and/or soft-
ware provided by the manufacturers. This ap-

proach preserves the spread of implementa-
tion aspects to the upper layers of the Border
Server’s architecture.

Context server

The modules of Context Server, following
described, interoperate in the provision of the
functionalities for context awareness services.
Each of these modules is responsible for one
stage of context awareness, since its acqui-
sition until the time that it is stored and/or
passed on to anyone who requested the con-
textual information. An overview of the Con-
text Server architecture is illustrated in Figure
5, characterizing the relationship with Border
Servers, other middleware services, other re-
mote Context Servers, and applications.

Acquisition module

It provides support for the capture of
contextual information, collected by Border
Servers, considering logic (software inter-
faces) and/or hardware sensors. This module
presents a server behaviour whose function-
ality is implemented through an ESB, al-
lowing Border Servers, whenever there are
significant variations in contextual data, to
publish these data.

Actuation module

It is in charge of the actuators control (acti-
vation, deactivation, and configuration), after
being notified by other Context Server mod-
ules. This module receives the actuator’s iden-
tifier and operational parameters to be used,
and interoperates with Border Servers for trig-
gering the actuators. In general, the Actuation
Module is responsible for triggering the ubiq-
uitous environment actions that change the
state of the environment, enabling the use of
context awareness in applications for automa-
tion and control.

Notification module

It deals with notifying the result of context
processing performed by the Interpretation
Module. This module receives, through the
Communication Module, subscriptions from
all services and/or applications that require
notifications about the context state. The No-
tification Module also receives all decisions of

26 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

actuation, resulting from the autonomic treat-
ment of context rules.

Communication module

This module is used by remote Context
Servers and/or applications to request con-
textual data and/or to trigger actuators. This
module provides the dissemination of context
information to other middleware services, as
well as sends messages to users. It receives
requests through an ESB, and interoperates
with other architectural components using
messages, as well as with users using public
protocols for sending messages over the cel-
lular network (SMS - Short Message Service),
Google Talk, and emails. The module includes
a repository responsible for storing informa-
tion necessary for sending alerts.

Configuration module

It allows the management of Context Serv-
er settings, including specifications of sensors
and actuators, as well as information of equip-
ment in which the context is being collected.

Mobile access module

This module provides mobile access to
EXEHDA-UC. It is organized in two blocks
(Figure 6): Block A displays contextual infor-
mation, and Block B displays proactive alerts.
Particularly, the provision of proactive alerts
on a hardware platform that can follow the
user, while he/she performs its activities in
different places, maximizes the ubiquity of the
proposed context awareness service.

Block A – Display of Contextual Informa-
tion - provides graphical and textual reports
for users, considering their contexts of inter-
est. Communication with the Context Server
happens employing a two-step protocol. In
the first an inspection of the context informa-
tion that is being treated is made. In the sec-
ond, data are requested for specific contextual
information in a time interval. The features of
this block are organized into three modules, as
follows:

Report Module: this module displays contex-
tual information on the mobile device. The main
operations available through its interface are:
(i) to request the list of contextual information
which is handled by the Context Server, (ii) to

Figure 5. Context Server.

27Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

select contextual information that is displayed in
the report, (iii) to select the report type: graphical
or textual, and (iv) to enable for the user, once
the report is displayed, alternatives to customi-
zation of the period of data shown.

Access Module: this module consists of a
service that runs in the Context Server, hav-
ing access to the Repository of Context. The
features of this module are: (i) to return the
list of contextual information managed by the
Context Server, and (ii) to return the contex-
tual information relevant to the user’s context
of interest, in a specific time interval.

Request Module: aims at requesting the con-
textual information to the Access Module, con-
sidering a demand of the Report Module. This
module has three functions: (i) to request the
list of all the contextual information handled
by the Context Server, (ii) to request specific
contextual information desired by the user in
the specified time interval, (iii) to send this re-
quest to the Access Module through the ESB,
and (iv) to receive and interpret contextual in-
formation from the Access Module, making it
available to the Report Module.

Block B - Handling Proactive Alerts - is in-
tended to notify the user about the occurrence
of events of interest, through proactive notifica-
tion. The functionalities of the block are organ-
ized into two modules, described as follows.

Alert Module: runs on mobile devices, pro-
viding alerts for users. For this, the native
mechanism for notification of the mobile plat-

form is used. This option provides for the user
an integrated management of alerts on their
mobile device. Its main functions are: (i) to
recover, in the time interval specified by the
user, alerts from the Distribution Module, and
(ii) to provide for the user these alerts in the
notification area of the mobile device.

Distribution Module: runs on the same
equipment of the Context Server, under unin-
terrupted operation. Its main functions are: (i)
to receive alerts produced by the Rule Manag-
er Component of the Context Server, and (ii) to
provide alerts to mobile devices. This module
operates keeping the alerts produced by dif-
ferent contextual rules, treated in the Inter-
pretation Module of the Context Server. This
module is accessed by mobile devices through
the Communication Module of the Context
Server, which uses an ESB to provide access to
different functionalities of the Context Server.

Case study

The EXEHDA-UC architecture is not spe-
cific to a particular problem domain, but is
designed to be comprehensive, aiming to meet
different domains. In this sense, despite the
fact that the case study described in this sec-
tion is related to a project in the area of agricul-
ture, the architecture enables support to other
application domains.

Thus, this section summarizes the main as-
pects of the case study related to the AMPLUS

Figure 6. Mobile access manager.

28 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

project (http://amplus.ufpel.edu.br), used to
evaluate the functionalities of EXEHDA-UC.
The case study includes tasks related to sensing,
collection, processing, and notification of con-
text. In this case study an application for a Web
interface and mobile devices was developed,
whose usability was evaluated by the users.

The main purpose of seed analysis is to de-
termine the quality of a lot and thus its value
for seeding. So that the objectives of the analy-
sis are achieved it is necessary that laborato-
ries have appropriate equipment and follow
standardized methods and procedures (ISTA,
2012). In this way, AMPLUS project was con-
ceived to provide mobile and context-aware
services, allowing storage of contextual states
that characterize the equipments of the Di-
dactic Laboratory of Seed Analysis (LDAS -
http://amplus.ufpel.edu.br/ldas), through the
implementation of various tests, and a proac-
tive actuation when necessary.

The scalability and robustness were the
criteria to select the technologies used for the
prototyping of the mechanisms for collecting,
storing, and processing of context, as well as
actuation in the environment. In this sense,
the code of the Border and Context Servers
is written in the Python language. The XML-
RPC (Extensible Markup Language - Remote
Procedure Call) (http://www.xmlrpc.com) is
employed to implement the ESB, used for in-
teroperability. The Repository of Context uses
PostgreSQL for deployment of databases. The
sensors and actuators communicate at 1-Wire
protocol (http://ubiq.inf.ufpel.edu.br/1-wire).

In the perspective of EXEHDA-UC archi-
tecture, the process of defining the application
begins with a survey of sensing demand, and
corresponding physical design of the sensors
network cabling. The sensors of AMPLUS
project use the 1-Wire protocol for the physical
management. Each sensor has a unique iden-
tification defined by the manufacturer, which
is associated with a logical identification
number, which is registered in the Repository
of Contexts. The sensors are associated with
contexts of interest defined by users, through
their logical identification number. Each con-
text of interest may be formed by one or more
sensors. Associated with each context of inter-
est there is a rule, which processes computa-
tionally the sensors involved with it.

This way, as the sensors are published by
the Border Server, rules written in Python
are triggered by the Context Server in an au-
tonomic way.The reading of the sensors is

done by drivers (software) for specific types of
sensor, which are triggered by the Scheduler
Component of the Border Server. In this case
study, the Scheduler is activated every minute.

In order to facilitate handling by the user,
the rules can be parameterized. For example,
in the application of this case study, it is con-
sidered that the range of 40°C to 41°C is “high
temperature” and between 18°C and 19°C is
“low temperature” of a particular device used
in AMPLUS Project. Still, it is necessary to reg-
ister information about the infrastructure of
sensing through the Configuration Module of
the Context Server.

Finally, the end user application can be
prototyped. This is influenced by context data
notified through the modules of Notification
and Communication, as well as through rules
that trigger adaptive procedures. For example,
an application of AMPLUS project that moni-
tors the temperature of a seed germination
chamber can subscribe to receive alerts when
the temperature is outside a given range ap-
propriate to the experiment. Associated with
this rule, another rule states how the alert
will be sent, for example, in opening hours a
light alert appears in the technician laboratory
room, otherwise an alert will be sent by email.
To receive the alerts, persons in charge of infra-
structure and/or equipment in particular need
to be previously registered in the Repository
of Context through the Configuration Module.

Developed application

The developed application uses two ap-
proaches, defined with users of the LDAS, one
addressed to a Web interface and another to
mobile devices.

The Web interface allows the selection of
the context of interest to be displayed, provid-
ing a textual report with relevant data collect-
ed the previous week. Along with this report
a menu that lets the user to select a graphic
visualization of data as well as the creation of
custom reporting are available.

The graphical report (Figure 7) provided by
the system allows simultaneous viewing of in-
formation from multiple sensors. The selection
of sensors is made from a menu that supports
multiple selections. Also a resource inspection
which allows comparison of values at a given
moment of time is available. The time window
of the data being displayed can be set by the
user via the same graphical interface that dis-
plays the sensing values.

29Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

A feature that performs the contextual data
crossing, involving multiple sensors from dif-
ferent rules, was designed to provide data for
researches in LDAS. All manipulation is done
through the Web interface with facilities for
adding, removing, and editing rules and pa-
rameters, as shown in Figure 8.

Still, in order to promote the proactivity of
the AMPLUS Project with the user commu-

nity, we developed interfaces for communica-
tion services: e-mail and SMS to the cellular
network. These messages are produced from
the processing of contextual rules autono-
mously by the Interpretation Module of the
Context Server.

The routine of the laboratory workers im-
plies mobility in different physical environ-
ments of the LDAS. To address this situation,

Figure 7. Graphical report.

Figure 8. Contextual data crossing.

30 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

the Communication Module provides an in-
terface for visual alerts, which are activated
whenever a device is in a state that requires
attention. Considering these alert, details can
be inferred through the computer interface of
the AMPLUS Project.

The interface for mobile access was intend-
ed to the Android platform. Through the initial
interface the user can select the sensor to be
displayed, either through a textual or graphical
report. These reports enable the user to specify
the display interval (hour, day, week), and the
vertical axis adjustment is done automatically,
minimizing the use of scrolling. The display of
alerts is done through the interface provided
by the Android platform itself. This aspect en-
hances the integration between the alerts mech-
anism and the functionalities of the user’s smart
phone. The interfaces corresponding to these
features are shown in Figure 9.

Evaluation

The literature states that prototyping is the
most commonly applied technique to evaluate
features of a middleware. The main target is to
show the capabilities of the middleware based
on experimental applications. The user expe-
rience can be explicitly evaluated, through
questionnaires that assess the usability of the
applications (Knappmeyer et al., 2013).

Thus, this section presents the experiment
details and the results obtained with the appli-
cation’s evaluation. The evaluation regards the
application acceptance, which involved LDAS
volunteer users. For this study we considered
4 teachers, 5 students, and 1 technician. Each
participant used a mobile device and a desk-
top. We performed a basic training on the ap-

plication operation beforehand. Participants
were asked to use the application and respond
to an evaluation questionnaire regarding the
experience concerning the use of the system.

The answers should be within a range of
five points, ranging from 1 point (totally disa-
gree) to 5 points (totally agree). To evaluate the
model acceptability, checking the system us-
ability, the questionnaires were defined based
on the Technology Acceptance Model (TAM)
(Yoon and Kim, 2007). The TAM model con-
siders the following main themes for applica-
tion acceptance: (i) Ease of Use: the degree in
which users evaluating the application may
reduce their effort; (ii) Usefulness: the degree
in which users evaluating the application may
improve their performance.

Tables 1 and 2 contain the questionnaire
applied to users and the answers obtained.
The questions were designed in order to be
simple, short and direct. Both tables present
the question in the first column and the per-
centage obtained with the number of users in
brackets following from “Totally Disagree” to
“Totally Agree”. The last column shows the
consolidation average percentage score ob-
tained by the responses, which varied between
zero and five.

Analyzing the results it can be seen that ap-
proval is high for both ease of use and useful-
ness. However, there were results in the range
“indifferent” in the last two issues of useful-
ness. This can be interpreted as a concern for
the quality control of experiments developed
in LDAS, which depends basically on the use
of autonomic mechanisms, without the usual
human intervention, for issuing alerts for con-
textual states that require immediate actua-
tion. In this case, a strategy that can be adopt-

Figure 9. Interfaces of the mobile application.

31Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

ed is to intensify the testing and validation
with users and start a gradual deployment of
applications.

Also, considering the results, we can state
that the prototyping has shown promising re-
sults, both in terms of the middleware archi-
tecture design as the technologies used.

Related work

In this work we study the following relat-
ed work: CARE (Agostini et al., 2009), CoCA
(Ejigu et al., 2008), HiCon (Cho et al., 2008), So-
lar (Chen et al., 2008), and WComp (Ferry et
al., 2013). These projects were selected because
they represent a substantial set of the research
that has been done in recent years toward ar-
chitectures for supporting context awareness.

The study has been done considering the
main design assumptions of EXEHDA-UC: (i)

distributed architecture, (ii) support for sensor
and actuator networks, (iii) autonomic acquisi-
tion of context data, (iv) support for rule process-
ing, and (v) support for distributed actuation.

The architectures studied did not maintain a
decentralized approach for all stages of the con-
text processing, which is not appropriate for the
requirement of large scale distribution of ubiq-
uitous environments. In turn, the architectural
model of EXEHDA-UC is structured in a dis-
tributed way, at all stages of handling context
information, from acquisition to actuation.

The EXEHDA-UC can manage sensor and
actuator networks, optimizing the manage-
ment of acquisition of context data from vari-
ous types of sensors, usual in computational
environments for providing ubiquitous ap-
plications. Such feature is found in part in the
projects CoCA and HiCon, which have sup-
port to sensor networks. The project WComp

Question Totally
disagree

Partially
disagree Neutral Partially

agree
Totally
agree Average

1. The application is easy to
understand. 0,0% (0) 0,0% (0) 0,0% (0) 40,0% (4) 60,0% (6) 4,60

2. The application is easy
to use. 0,0% (0) 0,0% (0) 0,0% (0) 30,0% (3) 70,0% (7) 4,70

3. The options are clear and
objective. 0,0% (0) 0,0% (0) 10,0% (1) 20,0% (2) 70,0% (7) 4,60

4. I can select a context of
interestwith little effort. 0,0% (0) 0,0% (0) 0,0% (0) 20,0% (2) 80,0% (8) 4,80

5. I can access the graphical
reportswith little effort. 0,0% (0) 0,0% (0) 0,0% (0) 30,0% (3) 70,0% (7) 4,70

Table 1. Ease of use evaluation.

Question Totally
disagree

Partially
disagree Neutral Partially

agree
Totally
agree Average

1. The options presented are
relevant. 0,0% (0) 0,0% (0) 0,0% (0) 30,0% (3) 70,0% (7) 4,70

2. The application makes it easy
to obtain contextual data from
multiple sensors.

0,0% (0) 0,0% (0) 0,0% (0) 40,0% (4) 60,0% (6) 4,60

3. The application makes my
mobility easy. 0,0% (0) 0,0% (0) 0,0% (1) 40,0% (4) 60,0% (6) 4,60

4. The application makes immediate
actuation easy, considering the
sending of one alert or message.

0,0% (0) 0,0% (0) 30,0% (3) 30,0% (3) 40,0% (4) 4,10

5. I would use this application in
my work at LDAS. 0,0% (0) 0,0% (0) 30,0% (3) 20,0% (2) 50,0% (5) 4,20

Table 2. Usefulness evaluation.

32 Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

allows actuation in the environment; however,
it does not support actuator networks.

With the exception of the CARE and Solar
projects, the others allow the use of specific
mechanisms for acquisition, adopting a strat-
egy of separation between the acquisition and
use of context. Besides contemplating this as-
pect, the EXEHDA-UC presents a differential
that consists in the employment of an auto-
nomic approach in the collection of contextual
data, as these continue to be obtained by the
mechanism, even if the applications involved
in their use are not in operation.

In most projects, the handling of rules is
restricted to a few steps of the context process-
ing. The EXEHDA-UC distinguished by its
software architecture has been designed to
support distributed processing of customiz-
able rules, which can be linked to different
treatment levels of contextual data, both in
Border Servers as in Context Servers.

Concluding remarks

The EXEHDA-UC architecture provides
a distributed approach in context acquisition
and/or actuation in the environment. Further-
more, EXEHDA-UC approximates the sensor
network to an infrastructure with autonomous
capability of context treatment.

Enhancing the distributed approach in the
treatment of contextual data, the EXEHDA-
UC supports the concept of sensor and ac-
tuator networks, which provides aspects of
modularity in software development and also
contributes to the organization of procedures
for creating and maintaining the networks in-
volved.

The main contribution of EXEHDA-UC is
the managing of the acquisition, storage, and
processing of context data, independently
of the application, in an autonomic and rule-
based perspective. The autonomic approach
and the use of rules in different parts of the
distributed architecture of EXEHDA-UC is a
substantial difference to the related work.

The usability evaluations, performed by
users of the AMPLUS project, have been posi-
tive and have brought returns to the consoli-
dation of EXEHDA-UC.

Among others, the following aspects
should be explored in future works: (i) to ex-
plore case studies in which processing rules
employ higher level inference mechanisms;
and (ii) to use the EXEHDA-UC architecture
for providing situation awareness, in which

future situations of the different contexts in
the ubiquitous environmentare anticipated.

References

AGOSTINI, A.; BETTINI, C.; RIBONI, D. 2009. Hy-
brid Reasoning in the CARE Middleware for
Context Awareness. International Journal of Web
Engineering and Technology, 5(1):3-23.

 http://dx.doi.org/10.1504/IJWET.2009.025011
AUGUSTIN, I.; YAMIN, A.; SILVA, L. 2008. Buil-

ding a smart environment at large-scale with a
pervasive grid middleware. In: I. AUGUSTIN;
A. YAMIN; L. SILVA, Grid Computing Research
Progress. 1st ed., New York, Nova Science, p.
323-344.

BELLAVISTA, P.; CORRADI, A.; FANELLI, M.;
FOSCHINI, L. 2012. A Survey of Context Data
Distribution for Mobile Ubiquitous Systems.
ACM Computing Surveys, 44(4):24:1-24:45.

 http://dx.doi.org/10.1145/2333112.2333119
BETTINI C.; BRDICZKA O.; HENRICKSEN K.; IN-

DULSKA J.; NICKLAS D.; RANGANATHAN
A.; RIBONI D. 2010. A Survey of Context Mod-
elling and Reasoning Techniques. Pervasive and
Mobile Computing, 6(2):161-180.

 http://dx.doi.org/10.1016/j.pmcj.2009.06.002
CACERES, R.; FRIDAY, A. 2012. Ubicomp Systems

at 20: Progress, Opportunities, and Challenges.
IEEE Pervasive Computing, 11(1):14-21.

 http://dx.doi.org/10.1109/MPRV.2011.85
CHEN, G.; LI, M.; KOTZ, D. 2008. Data-Centric

Middleware for Context-Aware Pervasive Com-
puting. Pervasive and Mobile Computing, 4(2):216-
253. http://dx.doi.org/10.1016/j.pmcj.2007.10.001

CHO, K.; HWANG, I.; KANG, S.; KIM, B.; LEE,
J.; LEE, S.; PARK, S.; SONG, J.; RHEE, Y. 2008.
Hicon: a Hierarchical Context Monitoring and
Composition Framework for Next-Genera-
tion Context-Aware Services. IEEE Network,
22(4):34-42.

 http://dx.doi.org/10.1109/MNET.2008.4579769
COSTA, C.A.; YAMIN, A.C.; GEYER, C.F.R. 2008.

Toward a General Software Infrastructure for
Ubiquitous Computing. IEEE Pervasive Compu-
ting, 7(1):64-73.

 http://dx.doi.org/10.1109/MPRV.2008.21
EJIGU, D.; SCUTURICI, M.; BRUNIE, L. 2008. Hy-

brid Approach to Collaborative Context-Aware
Service Platform for Pervasive Computing. Jour-
nal of Computers, 3(1):40-50.

 http://dx.doi.org/10.4304/jcp.3.1.40-50
FERRY, N.; HOURDIN, V.; LAVIROTTE, S.; REY, G.;

RIVEILL, M.; TIGLI, J.-Y. 2013. WComp, Mid-
dleware for Ubiquitous Computing and System
Focused Adaptation. In: N. FERRY; V. HOUR-
DIN; S. LAVIROTTE; G. REY; M. RIVEILL; J.-Y.
TIGLI. Computer Science and Ambient Intelligence.
Hoboken, John Wiley Sons, p. 89-120.

 http://dx.doi.org/10.1002/9781118580974.ch6

33Journal of Applied Computing Research, vol. 3, n. 1, p. 19-33, Jan/Jun 2013

Lopes et al. | Toward a distributed architecture for context awareness in ubiquitous computing

ISTA - SEED TESTING INTERNATIONAL. 2012.
ISTA News Bulletin. N. 144, p. 111.

KAKOUSIS, K.; PASPALLIS, N.; PAPADOPOU-
LOS, G. 2010. A survey of software adaptation
in mobile and ubiquitous computing. Enterprise
Information Systems, 4(4):355-389.

 http://dx.doi.org/10.1080/17517575.2010.509814
KNAPPMEYER, M.; KIANI, S.; REETZ, E.; BAKER,

N.; TONJES, R. 2013. Survey of Context Provi-
sioning Middleware. Communications Surveys
Tutorials, IEEE, 15(3):1492-1519. http://dx.doi.
org/10.1109/SURV.2013.010413.00207

LOPES, J.; SOUZA, R.; COSTA, C.; BARBOSA, J.;
GUSMÃO, M.; YAMIN, A.; GEYER, C. 2012. A
Model for Context Awareness in Ubicomp. In:
BRAZILIAN SYMPOSIUM ON MULTIMEDIA
AND THE WEB, 1, São Paulo, 2012. Anais…
New York, 1:161-168.

 http://doi.acm.org/10.1145/2382636.2382672

SILVA T.; CELES C.; MOTA V.; LOUREIRO A. 2012.
A Picture of Present Ubicomp Research Explor-
ing Publications from Important Events in the
Field. Journal of Applied Computing Research,
2(1):32-49.

 http://dx.doi.org/10.4013/jacr.2012.21.04
WEISER, M. 1991. The Computer for the 21st Cen-

tury. Scientific American, 3(265):94-104.
YOON, C.; KIM, S. 2007.Convenience and TAM in a

Ubiquitous Computing Environment: The Case
of Wireless LAN. Electronic Commerce Research
and Applications, 6(1):102-112.

 http://dx.doi.org/10.1016/j.elerap.2006.06.009

Submitted on October 21, 2013
Accepted on January 25, 2014

