
Journal of Applied Computing Research, 1(2):76-83
July-December 2011
© 2011 by Unisinos - doi: 10.4013/jacr.2011.12.02

 Flow Based Load Balancing:
Optimizing Web Servers Resource Utilization

Daniel Stefani Marcon, Leonardo Richter Bays
Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brasil.
dsmarcon@inf.ufrgs.br, lrbays@inf.ufrgs.br

Abstract. The expansion of the Internet has caused a growth on the number of users requesting services
through the network, as well as the number of servers and the amount of services they offer. In order to
minimize this problem, web servers have started to use a distributed architecture implementation, however
with only one external interface for receiving requests from users. In this paper, we propose an approach
towards flow-oriented load balancing, using the OpenFlow technology. Thus, each data flow is directed
to a server, according to the policy being employed. We evaluate three load balancing techniques: random
choice, time slice based choice and weighted balancing, each of them with its advantages and disadvantages.
Through our measurements, weighted balancing achieved the best results over the other policies. Moreover,
random choice and time slice based choice are capable of distributing the load in an acceptable way among
nodes, considering the average load of each server.

Keywords: Load balancing, OpenFlow, Flow based load balancing.

Introduction

The expansion of the Internet caused a
growth on the number of users requesting
services over the network, as well as an in-
crease in the number of servers and in the
amount of services they offer. Moreover, users
expect to receive responses in a short period of
time, regardless of the number of requests that
web servers must process at a given time. This
new scenario introduces several challenges to
the client/server model used on the Internet,
considering that the level of scalability of a sin-
gle web server is relatively low (Kwan et al.,
1995; Colajanni and Yu, 1997).

In order to minimize this problem, web
servers have started to use a distributed ar-
chitecture implementation, but with a single
external interface for receiving requests from
users. Thus, load balancing mechanisms are
necessary to distribute requests among mul-
tiple nodes offering the same service (Aweya
et al., 2002). Hence, the scalability of the service
being offered is proportional to the efficien-
cy of the load balancing algorithm used to
guarantee an optimal utilization of available
resources.

Recent advances in network management
technologies enable dynamic reprogramming
of devices by means of data flows. The Open-
Flow protocol (McKeown et al., 2008) allows
the reprogramming of switches in a network
through an external controller, which central-
izes management operations.

In this paper, we propose an approach to-
wards flow based load balancing, using the
OpenFlow technology. Therefore, each data flow
is directed to a server, according to the policy be-
ing employed. To evaluate the effectiveness of
this approach in the context of load balancing,
we use three distinct policies: random choice,
time slice based choice and weighted balancing.

Our measurements showed that weighted
balancing achieved the best results over the
other policies, despite the complexity of the
code of this policy. The other two policies, ran-
dom choice and time slice based choice, are ca-
pable of distributing the load in an acceptable
way among nodes, considering the average
load of each server. Despite proving the fea-
sibility of our approach, which was our goal,
more measurements are necessary to test the
performance and the scalability of the Open-
Flow in a real and complex scenario.

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 2011 77

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

This paper is structured as follows. Sec-
tion 2 describes the best techniques for load
balancing in the state of the art, as well as the
OpenFlow technology. Section 3 presents the
proposed solution for load balancing and the
experiments performed to evaluate our ap-
proach, and Section 4 exhibits the results ob-
tained from the experiments. Last, Section 5
concludes the paper and outlines future work
to be done.

Related Work

In this Section, we present a number of
load balancing proposals found in the litera-
ture which are closely related to ours, as well
as the OpenFlow technology, used by our ap-
proach to manipulate data flows in benefit of
load balancing. Last, we present a summary of
the load balancing proposals found in the state
of the art, indicating how OpenFlow could as-
sist in addressing their limitations.

Load Balancing

Load balancing is a topic with several ac-
ademic works in the literature. In (Colajanni
and Yu, 1997), the authors proposed the union
of two techniques, namely round-robin policy
and adaptive TTL (time-to-live) scheme. The
combination of these techniques takes into ac-
count the unequal rates of client requests and
the web server heterogeneity to map each re-
quest to a specific server.

In another paper, the authors propose an
algorithm for load balancing based on real
time server statistics (Real Time Statistics
Server-based Load Balancing - RTSLB). This
technique considers three main factors: CPU
utilization of the web server, its response rate
and the number of requests being handled by
the server (Shadrach et al., 2009).

On the other hand, in (Xu et al., 2004), web
traffic is modelled by stochastic processes and
some load balancing algorithms based on DNS
(Domain Name Server) are compared through
simulations. The results showed that the al-
gorithm RR2 (Two-Tier Round-Robin), which
uses information from the user domain and
from the load of the servers, had the best per-
formance.

Another proposed solution is based on a
DNS round-robin technique, with the addi-
tion of two new functionalities. Initially, a new
algorithm for indexing the performance and
the load of the nodes is described. Secondly,

a scheduler is proposed for task distribution
in the DNS server, which allocates a server
based on the performance index and on the
load index. To validate the proposal, the au-
thors performed a simulation, comparing this
approach with the standard round robin tech-
nique. The proposed solution got better re-
sults, completing its tasks in a shorter period
of time (Chin et al., 2010).

In (Yang et al., 2009), the authors propose
a technique called Random Early Detection
(RED), which is used to detect web servers with
high probability to be overloaded in the near
future. According to RED, the probability of a
server becoming overloaded is related to its cur-
rent load. This technique is intended to mitigate
the problem of DNS based techniques, which
is related to the oscillation of the load among
nodes offering the same service. In the simula-
tions performed, this solution enabled greater
stability, improving the quality of service.

Open Flow

The OpenFlow technology allows the
testing of experimental protocols in real net-
works, concomitantly with production traffic.
It is an abstraction and virtualization technol-
ogy for networking, allowing control over
network traffic through data flows (Kanaumi
et al., 2010).

This technology enables the management
of programmable switches, allowing the iso-
lation of different types of traffic (e.g. experi-
mental traffic and production traffic) by means
of an external controller. This is possible due
to the flow tables present in switches and rout-
ers, which are used to implement NAT (Net-
work Address Translation), QoS (Quality of
Service), and other features. Despite the vari-
ation of these tables among different manu-
facturers, there is a standard set of functions
present on all devices.

An OpenFlow based network is composed
of three main components: OpenFlow switch-
es, the OpenFlow protocol and the OpenFlow
controller (Kanaumi et al., 2010). The rela-
tionship among network components can be
viewed in more detail in Figure 1.

An OpenFlow switch is composed by three
main components:

• Flow tables: these contain the information
used by the switch to process frames of a
given flow. For flows under the control of
OpenFlow, possible actions are defined

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 201178

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

in the protocol specification (McKeown
et al., 2011);

• Group table: it allows a flow to point to a
group, increasing the forwarding options
of frames;

• Secure communication channel: it is used
for the communication between a switch
and a remote controller, enabling control
commands to be sent to the device re-
sponsible for managing network traffic.

The protocol defines the standard for com-
munication between a switch and a controller,
allowing the addition, removal and update of
entries in flow tables. The third component,
the controller, is responsible for managing the
switch through the OpenFlow protocol.

The main function of the controller is to add
and remove flows from the switch flow tables
(McKeown et al., 2008). Upon receiving a frame,
an OpenFlow-enabled switch searches its flow
tables for any actions defined for the flow of the
received frame. If an entry is found, the speci-
fied actions are performed and the frame is
forwarded. Otherwise, the frame is sent to the
controller, which will determine the action to
be performed for the received frame, possibly
adding an entry into the flow table for the next
frames of the same flow. This flexibility of the
controller allows the specification of a given
flow and its actions with great level of detail.

Summary

Load balancing solutions proposed in the
literature have some limitations, which can
cause problems in certain scenarios. DNS
based proposals have several advantages, es-
pecially when the problem is related to scal-
ability. However, such solutions rely on the
web server to send a message to the DNS serv-
er when it is overloaded. The overload of the
web server may cause delays in sending such
information to the DNS server, compromising
service availability.

RTSLB algorithm takes into account several
factors to distribute the load among servers;
nevertheless, it depends on the premise that
web servers send statistical information about
their load. This transmission of information in-
creases both network traffic and the complexi-
ty to choose a server, which may lead to delays
in the selection of a server.

The use of a flow based platform, such as
OpenFlow, is beneficial in the context of load
balancing. Unlike the solutions presented
above, it requires no action from the servers.
The external controller has complete knowl-
edge of the network, including the amount of
active flows per server, which allows it to per-
form load balancing in an autonomous way.

Proposed Solution

This Section presents the proposed solution
for the purpose of load balancing, through the
utilization of the OpenFlow technology. After-
wards, the test environment and performed
experiments are described.

Data Flow Based Balancing

In order to perform load balancing between
several servers within a network, we propose a
data flow oriented approach. A data flow is es-
tablished the moment in which a client sends
a request to a server. This flow remains active
while there is communication between both en-
tities, expiring after a certain period of inactivity.

Distinct data flows are divided between
the existing servers in a way that is trans-
parent for the client. Flows are managed by
switches present in the network, which re-
direct packets to a server chosen through a
load balancing policy. In a first step to evalu-
ate solutions for the load balancing problem,
we propose to combine three well known

Figure 1. OpenFlow Switch (McKeown et al., 2011).

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 2011 79

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

policies with OpenFlow to distribute flows
among network servers, with varying levels
of complexity:

• Random choice: each time a flow is es-
tablished, the controller selects a server
in a random way. This is the simplest
policy, where it is not necessary to store
any data; however, the current load of
each server is not considered.

• Time slice based choice: at each time
interval, the controller selects a server
which will be responsible for responding
to any request made within this period.
The server selection at each time interval
is made sequentially (round robin). This
way, no server will be responsible for
more time slices than any other server. In
this policy, the only information which
needs to be stored is the server responsible
for that time period; however, the current
load of each server is also not considered.

• Weighted balancing: the controller has
a general record regarding how many
flows are being redirected to each of the
servers. This way, in order to choose a
server in the establishment of a new flow,
it will always choose the server with the
minimum load level; that is, the server
which is currently communicating with
the smallest number of clients. At each
flow creation event, the flow counter for
this server is incremented, and this same
counter is decremented whenever a flow
is removed.

Experiments

Initially, in order to perform the experi-
ments, virtual networks with switches which
support the OpenFlow protocol were created
through the application Mininet (Lantz et al.,

2010). The created network has a tree based to-
pology, as presented in Figure 2. This topology
holds a total of 16 hosts and five switches. Four
or the 16 hosts present in the network were
used as servers (hosts connected to switch s18,
highlighted in the figure), and the remaining
hosts operate as clients. All clients access the
servers through the IP address of the main
server (h1); however, all packets are modified
before reaching their destination, so that load
balancing can be performed between all four
servers in the network (h1, h2, h3, and h4).

In order to perform load balancing between
the servers present in the network, a script was
created in the Python programming language
using the API of the NOX controller (Gude et
al., 2008). Each time a packet is received by a
switch, this switch verifies if there is already
a flow defined for this packet. If no flows ex-
ist, the switch alerts the controller, which will
decide which action should be taken. The
controller provides the default behaviour for
every switch in the network. In other words,
all switches possess the capability of learning
MAC addresses and the respective ports in
which the devices corresponding to these ad-
dresses are connected.

Additionally, the controller provides to
switch s17, which interconnects the other
switches present in the network, the capability
of performing load balancing between the four
servers in the network. Load balancing is per-
formed through the dynamic creation of flows
in this switch, which is located in the top level
of the network. Upon receiving a packet ad-
dressed to the main server (h1), a flow is cre-
ated in order to redirect packets to one of the
four servers, according to the selected load bal-
ancing policy. This way, all subsequent packets
received from the same origin in this connec-
tion will be redirected to this same server.

Figure 2. Network topology used for the experiments. The highlighted area shows the hosts used as servers.

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 201180

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

The previously described scenario was in-
stantiated for all three data flow based load
balancing policies proposed in Section 3.1: ran-
dom choice, time slice based choice (with five
second time slices) and weighted balancing.

The created flows also have an associated
timeout. In other words, flows are removed
after a certain period of inactivity. This guar-
antees that inactive flows will not be used by
other connections after the timeout is reached.
This way, if there are variations in the activity
levels between clients and servers over time, it
is possible to adapt the load balancing.

In order to simulate client behavior, a script
was created to run continuously in each client
machine in the network. This script runs for 30
minutes (1800 seconds), and has the following
behavior:

1. Sends ICMP echo request packets to the
server continuously, for a period which
may last between 60 and 300 seconds
(1 to 5 minutes);

2. After this cycle, the client remains inac-
tive for a period that lasts between 15
and 45 seconds. For testing purposes,
flow timeout was set to a low value (10
seconds). This inactivity period present
in the script guarantees that the flow will
remain inactive for enough time to be re-
moved from the switch;

3. Finally, after the inactivity period, the
client returns to the initial state and
resumes sending packets.

For each load balancing policy, the follow-
ing steps were performed in the experiments:

1. The NOX controller is initialized with the
controller script referring to the policy
which is currently being tested;

2. Mininet is initialized with the network
topology presented in Figure 2;

3. The testing script is started simultane-
ously in all network hosts which are not
servers; that is, in 12 of the hosts.

Results

As described in the previous section, all
tests were performed in a virtual network
created through the Mininet tool. Data was
collected through logs generated by the im-
plemented controller itself. Log entries are
created after every flow creation or removal
event, and show the exact amount of active
flows in the network during the testing period.

In tests performed using the random load
balancing policy, it is possible to notice differ-
ences in load levels throughout the execution.
The time series presented in Figure 3 shows
that there was a distribution of load between
the servers. However, it is possible to see pe-
riods in which certain servers had higher or
lower charges than the others. Server h4, for
example, was the server with highest load
level in the period between approximately
6 and 11.5 minutes of execution. This repre-
sents a period of 5.5 consecutive minutes, or
approximately 18% of the execution time for
the experiment.

The time slice based policy shows a simi-
lar behavior during most of the execution.
However, in the results obtained from the
performed experiments, shown in Figure 4, it
is possible to notice that there was a substan-
tial peak in the number of connections to a
single server in the initial testing period. This
is due to the fact that all clients start send-
ing packets at exactly the same time, and in
this load balancing policy, a single server is
chosen during a certain time slice. In the re-

Figure 3. Server load levels during the experiment, using the random choice policy.

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 2011 81

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

mainder of the execution, load balancing re-
sults were similar to the ones obtained using
the random policy. However, these results
show that this policy is not adequate in flash
crowd situations, where there is a substantial
growth in the number of users in a network
in a short period of time.

In contrast to the results from the first two
policies, weighted balancing showed itself ca-
pable of providing nearly ideal load balancing
during the entire execution period. As can be
seen in Figure 5, load levels remain equally bal-
anced between all servers, avoiding situations
in which certain servers have too high or too
low network loads.

Comparing average server loads during
the execution time of the experiments, it is
possible to see that there was no significant
difference between all three policies. Using
the random choice policy, the lowest average
of active flows obtained was ≈2.3, while the
highest was ≈3.6. Using the time slice based
policy, the lowest and highest averages were,
respectively, ≈2.3 and ≈3.1. Using weighted
balancing, the averages remained between
≈2.5 and ≈2.8.

This comparison can be viewed in Figure
6, and it shows that weighted balancing was
able to obtain greater equilibrium between the
average server loads. However, we believe that
such difference was not significant enough to
be taken into consideration. It is also possi-
ble to observe that even though the time slice
based policy produced an initial load level
peak in server h1, average loads remained bal-
anced between all four servers.

In the comparison between maximum load
levels, presented in Figure 7, it is possible to
see more significant differences. Using the
random choice policy, peaks remained be-

tween 5 and 8 active flows per server. Using
the time slice based policy; maximum load
levels observed were between 4 and 12 active
flows. The flash crowd event in the beginning
of the experiment led one of the servers to be
overloaded, responding to requests from all
clients in the network simultaneously.

However, using the weighted balancing
policy, none of the servers had a number of ac-
tive flows greater than 3. This shows that this
policy obtained a much greater success balanc-
ing the network load, since none of the 4 serv-
ers, in any moment, responded to a number of
clients greater than ¼ of those present in the
network.

Conclusions

Load balancing is a topic of great impor-
tance to ensure the efficient use of available
resources, which is not limited to web servers.
Nevertheless, it is a difficult task to implement
an efficient policy, providing optimal resource
utilization for nodes running the same web
service. In other words, besides ensuring the
optimization of available resources through
a chosen policy, we should also take into ac-
count the complexity of the code that imple-
ments this policy.

In this sense, OpenFlow enables the crea-
tion of new techniques for load balancing, with
greater flexibility and control over each server
and also over each data flow, providing the
ability to control the load of the servers at any
time. Hence, we proposed three flow based
load balancing policies. Through our measure-
ments, weighted balancing achieved the best
results over the other policies. Nonetheless,
the complexity of the code of this policy is lin-
ear in relation to the number of servers (O(n)),

Figure 4. Server load levels during the experiment, using the time slice based policy.

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 201182

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

which may be a disadvantage if there is a large
number of nodes offering the same service in
a distributed way. This is due to the fact that
this policy must go through the whole list of
servers for each new flow in order to find the
least overloaded node at that moment.

According to the results, random choice
and time slice based choice are capable of
distributing the load in an acceptable way
among nodes, considering the average load
of each server. However, both policies have
problems, which may result in servers be-
ing overloaded or underloaded. Such un-
equal distribution of flows does not occur in
weighted balancing. In addition to this, we
observed that the time slice based choice does

not provide proper distribution of load in
case of flash crowd events.

Future work involves a detailed analysis
of the proposed load balancing policies in real
networks, comparing them with state of the art
proposals. In addition to this, we intend to pro-
pose new load balancing schemes, combining
them with failover techniques in order to in-
crease the availability of web servers.

References

AWEYA, J.; OUELLETTE, M.; MONTUNO, D.Y.;
DORAY, B.; Felske, K. 2002. An adaptive load
balancing scheme for web servers. International
Journal of Network Management, 12:3-39.

 http://dx.doi.org/10.1002/nem.421

Figure 5. Server load levels during the experiment, using the weighted balancing policy.

Figure 6. Average server load during the experiments.

Figure 7. Maximum server load during the experiments.

Journal of Applied Computing Research, vol. 1, n. 2, p. 76-83, Jul/Dec 2011 83

Marcon and Bays | Flow Based Load Balancing: Optimizing Web Servers Resource Utilization

CHIN, M.L.; TAN, C.E.; BANDA, M. 2010. Efficient
load balancing for bursty demand in web based
application services via domain name services.
In: ASIA-PACIFIC SYMPOSIUM ON INFORMA-
TION AND TELECOMMUNICATION TECH-
NOLOGIES, 8th, Kuching, 2010. Proceedings…
Kuching, APSITT, p. 1-4.

COLAJANNI, M; YU, P.S. 1997. Adaptive TTL schemes
for load balancing of distributed web servers. SIG-
METRICS Performance Evaluation Review, 25:36-42.

 http://dx.doi.org/10.1145/262391.262401
GUDE, N.; KOPONEN, T.; PETTIT, J.; PFAFF, B.;

CASADO, M.; MCKEOWN, N.; SHENKER,
S. 2008. Nox: towards an operating system for
networks. SIGCOMM Computer Communication
Review, 38:105-110.

 http://dx.doi.org/10.1145/1384609.1384625
KANAUMI, Y.; SAITO, S.; KAWAI, E. 2010. Toward

large-scale programmable networks: Lessons
learned through the operation and management
of a wide-area openflow-based network. In:
INTERNATIONAL CONFERENCE ON NET-
WORK AND SERVICE MANAGEMENT, 6th,
Niagara Falls, 2010. Proceedings… Niagara Falls,
CNSM, p. 330-333.

 http://dx.doi.org/10.1109/CNSM.2010.5691225
KWAN, T.; McGRATH, R.; REED, D. 1995. NCSA’s

World Wide Web server: design and performan-
ce. Computer, 28(11):68-74.

 http://dx.doi.org/10.1109/2.471181
LANTZ, B.; HELLER, B.; McKEOWN, N. (2010).

A network in a laptop: rapid prototyping for
software-defined networks. In: PROCEEDINGS
OF THE NINTH ACM SIGCOMM WORK-
SHOP ON HOT TOPICS IN NETWORKS, 10,
New York, 2010. Proceedings… New York, p. 1-6.
http://dx.doi.org/10.1145/1868447.1868466

McKEOWN, N.; ANDERSON, T.; BALAKRISH-
NAN, H.; PARULKAR, G.; PETERSON, L.;
REXFORD, J.; SHENKER, S.; TURNER, J. 2008.
Openflow: enabling innovation in campus net-

works. SIGCOMM Computer Communication Re-
view, 38:69-74.

 http://dx.doi.org/10.1145/1355734.1355746
McKEOWN, N.; PFA, B.; LANTZ, B.; HELLER, B.;

BARKER, C.; COHN, D.; TALAYCO, D.; ERICK-
SON, D.; CRABBE, E.; GIBB, G.; APPENZEL-
LER, G.; TOURRILHES, J.; PETTIT, J.; YAP, K.;
POUTIEVSKI, L.; CASADO, M.; TAKAHASHI,
M.; KOBAYASHI, M.; BALLAND, P.; RAMA-
NATHAN, R.; PRICE, R.; SHERWOOD, R.;
DAS, S.; YABE, T.; YIAKOUMIS, Y.; KIS, Z.L.
2011. Openflow switch specification version
1.1.0. Available at: http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf. Accessed
on: 24/05/2011.

SHADRACH, D.; BALAGANI, K.; PHOHA, V. 2009.
A weighted metric based adaptive algorithm for
web server load balancing. In: INTERNATION-
AL SYMPOSIUM ON INTELLIGENT INFOR-
MATION TECHNOLOGY APPLICATION, 3,
Nanchang, 2009. Proceedings… Nanchang, IITA,
p. 449-452.

 http://dx.doi.org/10.1109/IITA.2009.84
XU, Z.; HUANG, R.; BHUYAN, L. 2004. Load bal-

ancing of dns-based distributed web server sys-
tems with page caching. In: INTERNATIONAL
CONFERENCE ON PARALLEL AND DISTRIB-
UTED SYSTEMS, 10, Newport Beach, 2004. Pro-
ceedings… Newport Beach, ICPADS, p. 587-594.
http://dx.doi.org/10.1109/ICPADS.2004.1316141

YANG, C.C.; CHEN, C.; CHEN, J.Y. 2009. Random
early detection web servers for dynamic load
balancing. In: INTERNATIONAL SYMPOSIUM
ON PERVASIVE SYSTEMS, ALGORITHMS,
AND NETWORKS, 10, kaohsiung, 2009. Pro-
ceedings… Kaohsiung, ISPAN, p. 364-368.

 http://dx.doi.org/10.1109/I-SPAN.2009.44

Submitted on October 10, 2011.
Accepted on December 12, 2011.

