
Abstract: Due to limited understanding of many diagenetic processes which contributes to petroleum 
quality determination, mathematical models become a very useful tool to improve understanding of these 
processes and to improve reservoir quality predictions prior drilling. Especially for reservoir engineers and 
petrophysicists the distribution of porosity and permeability are very important in the formation evaluation 
and definition of recovery strategies and evaluation of reservoir quality. In this context, we have developed 
an artificial neural network based model to predict macroporosity of sandstones reservoir systems. We have
used a score to quantify the importance of each feature in prediction process. This score allows creating 
progressive enhancement neural models, which are simpler and more accurate than conventional neural 
network models and multiple regressions. The main contribution of this paper is the building of a reduced 
model just with the most relevant features to macroporosity prediction. A dataset, containing petrographic 
and petrophysical characteristics, containing samples of the same formation sandstone reservoir was 
investigated. Study results show that progressive enhancement neural network is able to predict 
macroporosity with accuracy near 90%, suggesting that this technique is a valuable tool for reservoir quality 
prediction.
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Introduction

Nowadays, more than 85% of world en-
ergy consumption comes from fossil fuels and 
petroleum is dominant among them (Interna-
tional Energy Agency, 2010). This dominance 
has created a world’s economic dependence 
on petroleum production. Furthermore, pe-
troleum companies are among the biggest 
corporations in the world and have formed a 
key part of the global economy. However, fos-
sil fuels are a limited resource, and reservoirs 
are consumed more rapidly each year. More 
accessible reservoirs, which exploration is low 
cost, are almost vanished.

 Besides, remaining reservoirs are increas-
ingly more technically difficult to extract and, 
therefore, more expensive. Later reservoirs 
will only be economically feasible to extract 

at extremely high costs. In this context, ex-
ploration costs are a very important variable 
in reservoir exploration decision. In order to 
know the costs of field exploration, and in-
crease exploration success rates, oil compa-
nies must try to predict the quality of reser-
voirs. Accurate prediction of reservoir quality 
is, and will continue to be, a key challenge for 
hydrocarbon exploration and development 
(Kupecz et al., 1997).

Due to limited understanding of the details 
of many diagenetic processes, there is a lack 
for new techniques and tools to support qual-
ity predictions. Despite its notable economic 
importance, relatively few papers illustrate the 
application of studies to reservoir quality pre-
diction. The main difficulty to execute this task 
is that the creation of models to reservoir qual-
ity prediction is highly dependent on quality 
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and availability of calibration datasets (Ku-
pecz et al., 1997; Franchi, 2001). Biased datasets 
will generate poor models. Furthermore, lack 
of observations combined to a high amount 
of features describing each observation can 
become more difficult, or even prohibitive, to 
fit a multivariate model to forecast reservoir 
quality. This problem is known as “curse of di-
mensionality” (Bellman and Dreyfuss, 1962). 

Regression analysis techniques have been 
extensively used to predict petroleum reser-
voirs quality. However, this technique has well 
known limitations and it is highly dependent 
on domain experts. Otherwise, when domain 
experts are not available, the dataset qual-
ity affects calibration and validation of these 
models. Latterly, soft computing techniques 
have been used in many areas, including res-
ervoir characterization and modelling. Among 
these techniques, Artificial Neural Networks 
(ANNs) have been increasingly used.

In this paper, we have used the Progres-
sive Enhancement Neural Model (PENM) to 
predict porosity in sandstones reservoir sys-
tems. The main contribution of our approach 
is to generate a reduced model with more rel-
evant features to porosity prediction. The re-
sults show that our approach generates more 
accurate predictions than commonly used 
techniques, multiple regression analysis, and 
conventional ANNs. Another advantage is a 
lower dependency of domain expert than re-
gression analysis.

The remaining of the paper is organized 
as follows: The next section presents related 
works. Neural Modelling section presents 
basic concepts of ANNs. Experiments and 
Results section presents the dataset, data pre-
processing, experiment results and analysis. 
The last section concludes the paper and gives 
some directions of future work.

Related work

Two general approaches have been used 
for predicting reservoir quality in sandstones: 
empirical and process-oriented techniques. 
Empirical techniques use multiple regres-
sion analysis. Process-oriented techniques use 
chemical and mathematical models to under-
stand diagenetic processes and their effects on 
the evolution of reservoir (Kupecz et al., 1997). 
Despite the uncertainty associated with sim-
ulator-based forecasts, reservoir simulation 
continues to be the most reliable method for 
making performance predictions, particularly 

for reservoirs that do not have an extensive 
history (Franchi, 2001).

Regression analysis is the most commonly 
used technique to predict reservoir quality 
(Kupecz et al., 1997; Love et al., 1997; Bloch, 
1991). However, this technique has limitations 
and demands intense interaction with domain 
expert. Moreover, such models are sensitive to 
the limits imposed by the calibration dataset. 
Differences in depositional controls, depo-
sitional and sequence stratigraphic settings, 
and sequence stratigraphic concepts between 
sandstones and carbonates imply creating dif-
ferent models for predictions. Usually, if the 
dataset embraces data with two or more of 
these differences, the dataset must be divided 
in multiple subsets, which must encompass 
similar observations. This task is domain ex-
pert dependent. To achieve more accurate pre-
dictions, a model for each subset must be cre-
ated (Bloch, 1991). Consequently, models are 
likely to be basin-specific, and may even be 
restricted to particular facies or stratigraphic 
horizons, thus inherently limited in their ap-
plication.

Recently, soft computing techniques have 
been used in reservoir characterization and 
modelling (Nikravesh et al., 2003). Among 
these techniques, ANNs have been used to 
identify relationships between permeability, 
measured logs and core data (Ligtenbert and 
Wansink, 2003), to predict water saturation 
from log data (Al-Bulushi et al., 2009), to pre-
dict asphaltene precipitation in crude oil (Za-
hedi et al., 2009) and to predict reservoir vol-
ume (Akin et al., 2008). ANNs also have been 
used combined with other techniques, making 
part of hybrid models, like described in (Chao 
et al., 2009) to predict borehole stability. Simi-
larly to our work, ANNs and multiple regres-
sions were compared when predicting trap 
quality (Shi et al., 2004).

Neural modelling

To model this problem, we have selected 
ANNs technique. ANNs is a biologically in-
spired computing scheme. The study of ANNs 
started as an attempt to build mathematical 
models which worked in the same way that 
brains do. This study had lead to an abstract 
computer model of the human brain. ANNs are 
an adaptive, distributed, and highly parallel sys-
tem which has been used in many knowledge 
areas and has proven to solve problems that 
require pattern recognition (Bishop, 1996). This 
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model uses a group of algorithms which are con-
sidered to implement the fundamental functional 
source of intelligence (Kupecz et al., 1997). Now-
adays, ANNs is a solid technique and became a 
powerful language for using large flexible non-
linear models (Gersheinfeld, 1998).

Analogously to the brain, an ANN is com-
posed of processing nodes, also called arti-
ficial neurons, which are interconnected by 
weighted edges, called synapses. Each neu-
ron receives one or more inputs, multiplied 
by their weights, and sums these products to 
generate an output, which is adjusted by an 
activation function and sent to one or more 
neurons. Formally, a neuron has inputs x1, x2, 
…, xm. Each input xi is multiplied by its corre-
sponding weight wi.  That is, the neuron evalu-
ates net = x1w1 + x2w2 + … + xmwm. Finally, the 
neuron computes its output y as an activation 
function of net, i.e., y = f(net).

Based on structure of the connections 
among neurons, two different classes of net-
work architecture are identified: non-layered 
recurrent and layered feed-forward, which is 
the scope of this work. Regarding layered net-
works, neurons are organized forming layers. 
Neurons in a layer get input from the previous 
layer and feed their output to the next layer. 
The first layer is called input layer. Neurons at 
this layer just transmit their input to the next 
layer, with no computation. The last layer is 
called output layer. Typically, for regression 
problems, there is only a single neuron in this 
layer. For classification problems, there is a 
neuron for each category of the target variable. 
Between input and output layers, it can be one 
or more layers, called hidden layers.

Based on the amount of layers, two dif-
ferent classes of layered feed-forward neural 
networks are identified: single layer and mul-
tilayer. In single layer there is only one com-
puting layer, the output layer. If there are one 
or more hidden layers, the network is called 
multilayer or MLP (Multi Layer Perceptron). 
Single layer networks can only learn linearly 
separable patterns. Otherwise, MLP can learn 
non-linear patterns. The universal approxima-
tion theorem for ANNs states that MLP can 
approximate any continuous function (Bishop, 
1996). Figure 1 shows a typical MLP.

In order to train an ANN to perform a task, 
we must adjust the weights of each synapse 
in such a way as to create a model represent-
ing patterns expressed in data. This process 
is called learning. Although many learning 
algorithms for MLP have been proposed, 

backpropagation algorithm is the most widely 
used (Munakata, 2008).

The main difficult in the use of MLP lies 
in the design process. There are no rules to 
choose the best ANN configuration, in terms 
of layers and neurons in each layer, and the 
best training parameters. Therefore, design-
ing an MLP demands some iteration in or-
der to find the best MPL settings to a parti-
cular problem.

Although ANNs is a powerful technique 
they are affected by the “curse of dimension-
ality” in two ways: (i) in high dimensional 
data the ANN can use almost all its resourc-
es to represent irrelevant portions of search 
space; (ii) even if ANNs could focus on im-
portant portions of search space, the higher 
the dimensionality of input space the more 
data may be needed to find out what is im-
portant and what is not. Moreover, accord-
ing the Ockham’s razor principle, the model-
ler should select the most simple model and 
grossest reservoir description that will allow 
the desired estimation of reservoir perform-
ance (Franchi, 2001).

Progressive enhancement neural model

In order to overcome the “curse of dimen-
sionality” problem, we have used an approach 
called progressive enhancement neural model 
(Camargo and Engel, 2010). This approach 
includes creating regression models in which 
the choice of predictive features is carried out 
by an automatic procedure. To guide this auto-
matic procedure, we have been used a neural 
importance score, which is computed by:

Figure 1. A typical MLP containing 3-layers, 7 
neurons in input layer, 10 neurons in hidden layer 
and 3 neurons in output layer are utilized.
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where: 
• si represents the score for i-th feature;
•  n represents amount of neurons in the 

first hidden layer;
•  wik represents the weight of synapse be-

tween i-th neuron of input layer and k-th 
neuron of first hidden layer.

The main objective of this score is to quan-
tify the importance of each feature regarding 
target prediction. After MLP training, patterns 
expressed in data were learned and are repre-
sented in synaptic weights. So, the largest syn-
aptic weights are supposed to be linking the 
most important input features to the first hid-
den layer. If a synaptic weight tends to zero, 
its propagation to the first hidden layer, and 
consequently to following layers, will tend to 
zero too, denoting its little importance regard-
ing target prediction. While synapses among 
input and first hidden layer are supposed to 
encode patterns expressed in data, synapses 
among first hidden layer and output layer are 
supposed to decode patterns expressed in data 
to reconstruct this pattern. For this reason, our 
approach is concentrated in synaptic weights 
before first hidden layers, and ignores the oth-
ers.

In order to provide data to compute the 
scores of features, a conventional MLP must 
contain knowledge about the dataset. This 
way, before computing the scores, MLP must 
be previously trained with original train-
ing dataset, in which each sample must be 
described by all available features. After this 
training, scores can be computed.

In order to achieve the progressive en-
hancement of initial neural model, an itera-
tive process is performed. This process is per-
formed as follows: After score computing, it is 
executed a forward selection, which involves 
starting with the simplest model, containing 
just the largest score feature. At each stage, the 
next feature available, which has the largest 
score among unselected features, is inserted 
in the model, and the model is evaluated. This 
process continues iteratively until the measure 
is locally maximized, or when the available 
improvement falls bellow some threshold. 
Prediction error is the metric used to evalu-
ate models. Model evaluation is performed by 
some cross-validation technique.

The PENM approach is similar to Effroym-
son’s algorithm (Effroymson, 1960). However, 
while Effroymson’s approach is f-test and mul-
tiple regression-based, our approach is neural 
network-based. 

The final model, generated by our ap-
proach, is supposed to be enhanced regarding 
the initial MLP. This enhancement is obtained 
through selection of a subset of available fea-
tures. This subset must contain just the most 
important features regarding target predic-
tion. Formally, the progressive enhancement 
process will choose a subset of M features from 
the original set of N features, where (M ≤ N). 
Furthermore, if the enhanced model contains 
just the most important features, it is expected 
to be more accurate than the original model, 
which contains the original features.

Experiments and results

Available data

For this study, we have used an existing da-
taset published by (Lima and De Ros, 2002). 
This database contains observations of petro-
graphic and petrophysical characteristics of 
Devonian sandstone reservoirs of the Uerê 
Formation, which is an important oil explo-
ration target of the Solimões Basin. Further, 
exploration of the Uerê sandstones is compli-
cated by the heterogeneous quality of these 
reservoirs, which range from highly porous 
to extremely tight. Moreover, although the 
Solimões Basin has been explored throughout 
the past three decades, little is known about 
the reservoir quality control.

Another challenge is dataset dimension-
ality. This makes application of modelling 
techniques harder. The dataset contains 59 
samples and 88 features, which describes the 
petrographic and petrophysical characteristics 
of sandstones.

Data pre-processing

Before model creation, the dataset must be 
prepared to improve modelling process. The 
pre-processing phase includes some tasks like 
cleaning and transformation.

During cleaning task, one sample was de-
leted. This sample was considered an outlier 
by domain expert. Features containing exactly 
the same value for all samples were deleted. A 
well known pattern involving prediction target 
was eliminated from input data. Macroporo-
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sity can be directly computed through a sum of 
intergranular, intragranular in feldspar, intra-
granular in quartz grain, intragranular in mica, 
intragranular in heavy mineral, dissolution of 
pseudomatrix, dissolution of cement, mouldic, 
fracture and oversizes characteristics. So, these 
features were deleted, in order to allow find-
ing non-trivial relationships between macropo-
rosity and other characteristics. Some features 
holding the sum of others were deleted.

Regarding transformation task, input data 
were normalized by decimal scale technique 
(Han and Kamber, 2001). Original data, which 
were in [0,100] range, were divided by 100. Sub-
sequently, data were transformed to fall in [–1,1] 
range, in order to be used by the neural network.

Thus, after pre-processing, the dataset con-
tained 58 samples and 60 features.

The ANN was developed and tested on a 
Windows Based PC using MatLab software. 
Several MLP network structures were auto-
matically tested and evaluated by cross-val-
idation process. These structures had one or 
two hidden layers and from one to 60 neurons 
in each hidden layer. Different learning al-
gorithms were tested too. After these several 
tests, the best performance ANN was adopted. 

Adopted neural network

After testing and evaluating many architec-
tures and learning algorithms, it was selected 
an ANN with the following characteristics:

Network Architecture
• Multi Layer Perceptron;
• Activation strategy: Feedforward;
• Totally connected nodes;
• 3 layers;
• 60 neurons in input layer;
• 4 neurons in hidden layer;
• 1 neuron in output layer.

Information processing in nodes
•  Hidden layer(s) information processing: 

Sum is the input/propagation function. 
Hyperbolic tangent sigmoid activation 
function. BIAS node.

•  Output layer information processing: 
Sum is the input/propagation function. 
Linear output function. BIAS node.

Learning algorithm
•  Form of learning algorithm: Gradient 

descent with momentum and adaptive 
learning backpropagation;

•  Learning parameters: Learning rate: 0.01, 
ratio to increase learning rate: 1.05, ratio 
to decrease learning rate: 0.7, momentum 
constant: 0.0. Epochs: 

•  Dynamic strategy of learning parameter 
change: If the new error exceeds the old 
error by more than a predefined ratio 
(defined as 1.04), the new weights and 
biases are discarded. In addition, the 
learning rate is decreased (multiplied by 
0.7). Otherwise, the new weights, etc., are 
kept. If the new error is less than the old 
error, the learning rate is increased (mul-
tiplied by 1.05).

• 20 initializations/retraining; 
•  Synaptic weights were randomly gener-

ated and were normalized to a length of 1;
•  Stopping method: minimum gradient 

reached or maximum epoch reached;
•  Error measure: Mean Squared Error (MSE);

Model Selection
•  MSE was the error measure used for eva-

luation;
•  Selection of the best model was based 

upon lowest error on test set.

Model evaluation

Unfortunately, prediction methods are sus-
ceptible to overfitting the learning examples 
at the cost of decreasing generalization accu-
racy over unseen examples. For small training 
sets this problem is severer. Due to the lack 
of samples to perform an early stopping ap-
proach, and prevent overfitting, models evalu-
ation must be carefully planned. One of the 
most successful methods for evaluating per-
formance accuracy is the leave-one-out cross-
validation technique, in which the set of m 
training instances is repeatedly divided into a 
training set of size m-1 and test set of size 1, in 
all m possible ways.

Model error is the sum of absolute errors 
for each one of m tests performed during 
leave-one-out cross-validation process.

Comparison and analysis

After selecting the best ANN architecture 
and algorithms, and after its training, pat-
terns found in data are expressed in ANN 
synaptic weights. Figure 2 shows the scores 
from trained ANN. Few features, which are 
high scored, are identified as important and 
the most part of features are low scored. Low 
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scored features are perceived as noise in con-
ventional ANN. Higher scored features are 
supposed to be most important in target fea-
ture prediction.

Table 1 shows the top 10 ranking containing 
the scores of each feature. These scores are the 
basis for PENM creation. Features, which their 
scores are greater than mean plus a standard 
deviation, were emphasized.

Table 1. Top 10 feature scores for macroporosity 
prediction.

Position Feature Score
1 Quartz Monocrystalline 2.5538
2 Intergranular Volume 1.5992
3 Cement Total 1.0115
4 Carbonate Total 0.5677
5 Grain Replacement Total 0.3078
6 Quartz Overgrowth 0.2446
7 Clay Ooid 0.2396
8 Silicified Secondary Matrix 0.2379
9 Silica Total 0.2375
10 Microquartz Rims 0.2030

Let n as the amount of features in original 
dataset, the iterative process performed dur-
ing PENM creation can generate until n mod-
els. Table 2 shows evaluation results for each 
one of these models. Clearly, some models, 
which contain just a subset of all available fea-
tures, are more accurate than the full model, 
which contains 60 features of original dataset. 
In this case, the model containing the 3 largest 
scored features is the enhanced neural model 
generated by our approach.

In order to evaluate the results obtained 
with PENM approach, other approaches were 
applied to this dataset: Multiple Regression, 

which is the most commonly used technique 
to predict reservoir quality (Kupecz et al., 1997; 
Love et al., 1997; Bloch, 1991), and convention-
al neural networks.

Figures 3, 4 and 5 show a plotting of pre-
dicted and measured macroporosity using 
Multiple Regression, conventional ANN, and 
PENM, respectively. In each figure, correla-
tion coefficients between measured macro-
porosity and predicted macroporosity are 
shown.

Table 2. Macroporosity prediction errors.

Input features Absolute error % Error
1 2.7173 26.17
2 2.7110 26.11
3 1.8637 17.97
4 1.9578 18.86
5 2. 0533 19.78
... ... ...
60 2.1403 20.61

Figure 2. Scores for each input feature.

Figure 3. Correlation coefficient between predicted 
and measured macroporosity using multiple 
regression.

Figure 4. Correlation coefficient between predicted 
and measured macroporosity using a conventional 
ANN.
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In Uerê formation dataset (Lima and De 
Ros, 2002), comparing correlation coefficients, 
it is possible to conclude that macroporosity 
values predicted by PENM are the closest val-
ues of measured macroporosity.

Furthermore, Figure 6 shows a com-
parison among residual errors obtained 
through application of different predictive 
approaches employed in this work. In order 
to improve results visualization, residual 
errors of each approach were sorted in as-
cendant order. This figure shows that PENM 
achieves less residual errors than the other 
approaches used.

Conclusions

In this paper, we have used the Progressive 
Enhancement Neural Model to predict reser-
voir quality in sandstones. The main contribu-
tions of this paper include the following topics:

(i) The Progressive Enhancement neural 
model successfully predicted macroporos-
ity with a correlation coefficient of 0.8927 on 
58 samples in a well in the Uerê formation. 

The conventional neural model predicted 
macroporosity with a correlation coefficient 
of 0.8789 in the same dataset. The commonly 
used multiple regression predicted macropo-
rosity with a correlation coefficient of 0.8696. 
Thus, the progressive enhancement neural 
model has proven to be a powerful approach 
to predict sandstones macroporosity.

(ii) Despite a small accuracy gain obtained 
with PENM, the main contribution of our ap-
proach is generating simpler models, which 
contain just a small subset of features, without 
accuracy loss. Obeying Ockham’s razor prin-
ciple, models generated by PENM approach 
must be preferred due to simplicity.

(iii) Our approach can generate more ex-
plainable models, because it ranks the impor-
tance of each feature regarding target feature 
prediction. One of the greatest criticisms to 
ANN use is the generation of unexplainable 
black box models. Hence, this study can indi-
cate a way to open the black box. 

(iv) We have done several experiments 
to predict rocks permeability. PENM has 
created simpler and more accurate models. 
However, results were unsatisfactory, prob-
ably because petrographic and petrophysical 
characteristics are weakly related with per-
meability prediction.

(v) We also applied PENM to create models 
to classify observations according its petro-
facies in this same dataset. In these experi-
ments, small accuracy gains were repeated 
and simpler models were generated.
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