
Abstract: Context-aware computing is a research field that defines systems capable of adapting their
behavior according to any relevant information about entities (e.g., people, places and objects) of interest.
The ubiquitous computing is closely related to the use of contexts, since it aims to provide personalized,
transparent and on-demand services. Ubiquitous systems are frequently shared among multiple users,
which may lead to conflicts that occur during adaptation actions due to individual profiles divergences
and/or environment resources incompatibility. In such situations it is interesting to detect and solve those
conflicts, considering what is better for the group but also being fair enough with each individual demand,
whenever possible. This work presents the important concepts on the collective ubiquitous context-aware
applications field. Furthermore, it proposes a novel methodology for conflicts detection and resolution that
considers the trade-off between quality of services and resources consumption. A case study based on a
collective tourist guide was implemented as a proof-of-study to the proposed methodology.

Key words: context and awareness in collaborative systems, ubiquitous computing, adaptive collaborative
environments.

Journal of Applied Computing Research, 1(1):33-47
January-June 2011
© 2011 by Unisinos - doi: 10.4013/jacr.2011.11.03

Conflicts treatment for ubiquitous collective
and context-aware applications1

Thais R.M. Braga Silva
Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG, 818 – Km 6.
35690-000, Florestal, MG, Brasil. thais.braga@ufv.br

Linnyer B. Ruiz
Universidade Estadual de Maringá. Av. Colombo, 5790, Jd. Universitário.
87020-900, Maringá, PR, Brasil. linnyer@gmail.com

Antonio A.F. Loureiro
Universidade Federal de Minas Gerais. Av. Antônio Carlos, 6627 - Prédio do ICEx, Sala 4010.
Pampulha, 31270-010, Belo Horizonte, MG, Brasil. loureiro@dcc.ufmg.br

1 This article is an extended version of “A conflict resolution methodology for collective ubiquitous context-aware applica-
tions”, originally published in the 13th International Conference on Computer Supported Cooperative Work in Design (CSCWD
2009), 2009, p. 426-461. DOI: 10.1109/CSCWD.2009.4968096.

Introduction

The great advance observed in the last few
years in the way how it is possible to connect
the physical world to computational systems,
getting data from the environment and its en-
tities, has made possible the expansion of a
research field called context-aware comput-
ing. Contexts can be defined as data related to
entities (e.g., objects, people or environments)
of interest to a certain application (Dey, 2001).

The context-aware systems aim to perform
physical or computational adaptations consid-
ering such data and, consequently, according
to the needs and characteristics of their users
(Baldauf et al., 2007).

Contexts might be applied to different
computational scenarios (Abowd et al., 1999),
as the applications that belong to a specific
area called ubiquitous computing. Ubiquitous
systems can be defined as computational solu-
tions that can provide their services to the end

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201134

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

users all the time and everywhere (Greenfield,
2006; Weiser, 1993). The ubiquitous compu-
tational devices are generally embedded into
everyday objects, such as furniture, electron-
ics, clothes and personal belongings, among
others. Such devices can communicate among
each other and with other systems (the Inter-
net, for example) through wireless commu-
nication, using adequate standards and pro-
tocols. In general, these elements have severe
computational restrictions, such as limited
energy source, low processing and storage ca-
pacities and low data transmission rates. Ubiq-
uitous applications must provide services to
their users in a transparent way, and with the
best quality of service possible, according to
the amount of available resources. Intelligent
environments capable of adapting their ele-
ments according to the needs of users can be
seen as one of the classic examples of ubiqui-
tous applications (Edwards and Grinter, 2001).

Ubiquitous computing is a field that has
great affinity with the use of contextual data.
The use of contexts allows the development of
applications that are more adapted to the dif-
ferent situations of many users (Greenfield,
2006). Once this kind of system has the com-
putational and communication capabilities
integrated to the environment and used in a
transparent and on-demand way by users, the
use of contexts as inputs helps on improving
the personalization and adaptation of tasks.
Without context-awareness, ubiquitous com-
puting becomes static systems, based on pre-
programmed rules to the automatic execution
of standard services (Weiser, 1993).

Many issues are yet to be solved for the
context-aware computing, especially consid-
ering ubiquitous environments, to be used as
broadly as it was initially proposed (Schilit et
al., 1994). One of them is the study of collective
contexts conflicts resolution, which was select-
ed to be studied by the current work.

Collective contexts can be defined as con-
textual data shared among two or more users
belonging to the same context-aware applica-
tion, comprised of a group of people that wants
to perform the same set of tasks in a collabora-
tive way. Examples of this kind of applications
are tourist groups, shared smart environments
(e.g., houses, cars, offices) and public presenta-
tions or conferences. In general, users in those
scenarios have common goals. On the other
hand, individuals may diverge on the desired
adaptations due to differences on their indi-
vidual profiles. In this way, conflicts can be de-

tected and their resolution must be performed
in a way that considers the group as a whole
but also being fair enough with each individual,
whenever possible. In particular, collective con-
texts occur frequently in ubiquitous context-
aware applications since they are designed to
operate into everyday environments, which are
normally shared by many users. In this case,
besides collective and individual efficiency, the
conflict resolution methodology must be flexi-
ble, robust and resources consumption efficient.

The main goal of this work is to present issues
and problems related to collective ubiquitous
context-aware applications and then introduce
a new and efficient methodology to be used by
such applications to detect and solve collective
conflicts. In particular, this methodology is ca-
pable of dynamically select which is the best
conciliation algorithm, considering the amount
of resources available (e.g., energy, memory and
communication network) and the desired qual-
ity of service level. This adaptive behavior is ad-
equate to ubiquitous systems, which frequently
present modifications on their characteristics
and configurations through their life-time.

The basic motivation to the development of
this work is the existence of a great number of
collective context-aware applications, especial-
ly those related to the ubiquitous computing
area. Such applications need a computational
support in order to deal with the occurrence of
situations that are specific for systems that are
shared among multiple users. Besides, to the
best of our knowledge, there is no work in the
literature that deals with this theme in a con-
sistent way, providing modeling and resolu-
tion actions that are broad, adequate and with
minimal efficiency requirements.

The rest of this work is organized as follows:
the second section presents the main concepts
related to the collective context theme as well as
some related work found in literature. The third
section presents our proposal of a new method-
ology to deal with collective contexts conflicts.
The fourth section presents a collective tourist
guide case study as a proof-of-concept to dem-
onstrate the operation of the proposed method-
ology. Finally, the last section presents the final
comments and some future work perspectives.

Collective and context-aware
applications

There are many context-aware applica-
tions that demand actions to be performed for
a group of users. Those are called collective

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 35

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

context-aware applications and the occurrence
of them in ubiquitous systems generates even
more interesting scenarios: typical collabora-
tion problems that occur in collective applica-
tions are aggregated to challenges that are spe-
cific to the ubiquitous area, such as resource
limitation and dynamic system configuration.

Defining Related Concepts: Collective appli-
cations are those context-aware scenarios that
must consider the interests and contextual data
from a group of users to adapt their tasks. The
tasks of an application are the services offered
by it to the end users, such as the tourist attrac-
tions in the case of a collective tourist guide, or
the parameters adaptation actions of the do-
mestic elements for the smart environments.

A collective context can be defined as data
collected from the environment and from each
group element, used by a collective applica-
tion to perform its adaptations. Two types of
collective contexts can be observed:

• The first one is the environmental collec-
tive contexts, which represent the physi-
cal and/or computational environment
and its elements. They also represent the
relationship among the users and the en-
vironment, characterizing situations such
as property, sharing, permanent or tempo-
rary association, among others. These con-
texts and their values are shared among all
involved users. Weather conditions, sea-
son and the use of environment elements
are examples of this type of context.

• The second one is the personal contexts
that reflect the current state of an individ-
ual, represented by a set of values. They
reflect the characteristics, preferences
and personal situations of a user. These
contexts must also show the relationship
between the user and the other elements
of the group. Hunger, asleep and related-
ness degree are some possible types of
personal contexts. The personal contexts
also reflect the characteristics of the de-
vices (hardware, software and data com-
munication) used by the users to perform
a collective application.

Collective contexts are not the processing
results or the fusion of many individual con-
textual data. Rather, they are the set obtained
with those data and used by a collective con-
text-aware application. The set of contextual
data containing the level of sleep presented
by each one of the users participating in a col-

lective application is an example of a personal
collective context called “Sleep”.

The combination of many collective con-
texts types should be used to perform the
adaptation of a collective application. While
analyzing collective context input values pre-
sented by each user, as well as the current re-
sources and characteristics of the environment,
a collective application can reach an inconsist-
ency state. It may be unable to decide what to
do regarding the adaptations to be performed,
in order to answer individual and collective
demands at the same time. In this case, a col-
lective conflict is said to be occurred.

Once the occurrence of a collective conflict
is identified, the application must find ways,
which might be either simple or sophisticat-
ed, to solve the inconsistency or deadlock.
The execution of a technique or algorithm
that allows answering in a smart and conven-
ient way the differences on the collective con-
texts used as inputs to the execution of adap-
tations is called collective conflicts resolution
or conciliation.

Related Work: The proposals found in
Masthoff (2004) and McCarthy and Anag-
nost (2000) are related to the main goal of this
work: to perform collective conflicts resolu-
tion. However, while those studies keep their
focus on a single application based on a close
set of contexts and specific software architec-
tures, this paper has a broader and dynamic
view of the theme and offers a new solution,
capable of considering a range of implementa-
tions, configurations and applications.

Roy et al. (2006) present a solution to the
development of a smart house that considers
the activities and localization of multiple in-
habitants. Its main contribution is to provide
an environment that adapts itself to every par-
ticipant without giving preference to any of
them. As opposed to the Roy et al. proposal,
this work presents a generic collective conflicts
treatment solution, which can be implemented
for any application and adapted to their cur-
rent conditions.

Shin and Woo (2005) also discuss the ad-
aptation problem for collaborative ubiquitous
environments. They propose the assignment
of priorities to each user and always apply the
same static solution to solve a given problem.
The collective conflicts treatment method-
ology proposed in this work is based on the
provisioning of multiple resolution algorithms
types selected according to the application and
their characteristics.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201136

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

Brézillon and Araujo (2005) have a study
that presents the contexts sharing issues for
collaborative systems. The authors discuss
how the use of contexts is important for the
collaboration among actors of a shared sys-
tem, especially to facilitate the communica-
tion, interaction and sharing of knowledge.
The main focus of the work is related to con-
texts representation, as well as its implica-
tions and opportunities to improve the col-
laborative work support.

Ardissono et al. (2002) present a Web sys-
tem to prepare a tasks list to a heterogeneous
tourist group. The system splits the initial
group into sub-groups based on their ages,
interests, visual capabilities and physical dis-
abilities. Considering each sub-group’s infor-
mation, the system chooses the best tasks to
them, presenting separated lists or a single
and unified version. The system described
in Ardissono’s work is not a context-aware
application since its goal is to help users to
schedule the trip and not to guide them dur-
ing the visits considering current contexts.
The collective tourist guide application pre-
sented as a case study in this work interacts
with smart environments, collects contexts
and indicates the tasks to be performed at
each moment according to them.

Collective conflict resolution:
A dynamic approach

While developing a collective conflict treat-
ment solution, a context-aware application
life-cycle model proposal was elaborated.
The following overview of this cycle allows
a greater comprehension of the operational
dynamics for the context-aware systems, the
identification of the main related challenges
and, specially, the perception of the points in
which specific actions to collective applica-
tions must be performed.

Vieira et al. (2009) describe a development
process proposal to aid designers in the defi-
nition of context-aware systems. The focus of
Vieira et al. study is on the description of a
systematic methodology to the development
of context-aware software. Issues related to
the selected hardware, data communication,
details on the smart environment used and,
specially, the aspects connected to the collec-
tive applications were not directly treated by
the authors. Therefore, a particular model to
this work, that considers the issues described
above, was designed.

The model proposed by this work is a dia-
gram comprised of phases and their respective
activities. Each phase configures a period on
the life-cycle of a context-aware application
and each activity represents an important ac-
tion to be performed at that period in order
to the system to operate in a correct and com-
plete way. Although proposed to collective
applications, the model can also be used to the
development of individual applications since
all modules developed specifically to collec-
tive applications were encapsulated into a
single block, called Conflict Engine, which is
performed during a single activity. The model
also considers that the applications use a con-
text-aware software architecture (Baldauf et al.,
2007) to obtain contextual data (environmental
and personal), as well as other necessary serv-
ices such as contextual data processing (corre-
lation or fusion, for example), security, among
others.

The Conflict Engine is a framework respon-
sible for processing the collective tasks. The
suggested implementation of its components
configures the new methodology designed to
detect and solve collective conflicts.

Life-cycle Activity Diagram: the approach
selected to the development of the diagram
is based on the distribution of activities to be
performed during three distinct phases of a
context-aware application life-cycle: (i) Pre-
application, (ii) Application and (iii) Post-ap-
plication. Figure 1 illustrates the diagram.

The Pre-application phase deals with the
preparation of all aspects needed to the correct
and complete operation of a ubiquitous con-
text-aware application with collective conflicts
resolution. In this phase the following activi-
ties must be performed:

• Configure smart environments: the en-
vironments to be used must be instru-
mented with any mechanisms to offer
the applications diverse contextual data,
physical and computational resources
and communication facilities.

• Configure hardware: every user needs
hardware devices to interact with the ap-
plication, which can be embedded sensors,
wearable computing or even traditional
handhelds or cell phones. Once there are
many available devices’ models and con-
figurations, it is necessary not only to de-
tail minimal operational requirements, but
also to choose a strategy to deal with the
potential observed heterogeneity.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 37

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

• Software development: includes the imple-
mentation of the application, all software
architecture modules and the Conflict En-
gine, which is the software block respon-
sible for the collective conflicts resolution.
All software implementation details must
be addressed during this activity.

• Run initialization tasks: activity that per-
forms all the actions necessary to start the
application, the software architecture mod-
ules and the Conflict Engine block. In some
cases it might be necessary, for example,
time or actions synchronization, ensure us-
ers views (e.g., environment, applications
task, contexts), uniformity, among others.

The Application phase is the one in which
users, carrying their devices correctly se-
lected and configured, enter themselves into
a myriad of smart environments previously
instrumented, and perform, according to
their needs, a series of tasks made available
by the application. During the Application
phase, users want to be served with tasks in
the best way possible according to contextual
data collected from them, the elements of the
group and the surrounding environment.
In this phase the following activities must
be performed:

• Get input: the application acquires from
the system architecture, the three basic
necessary inputs, which are the personal
contexts, environmental contexts and
tasks list. It is the architecture responsi-
bility to provide modules that are able to
get that information.

• Input syntactic and semantics pre-
processing: contextual data and applica-

tion tasks must receive standard syntac-
tic and semantic associations to improve
their storage, exchange and final use. It
is also necessary to associate contexts
to tasks in order to collect and consider
for possible adaptations only those data
that are really important in the definition
of current users and environment states.
Other specific pre-processing tasks can
also be executed during this activity.

• Tasks classification: tasks can be catego-
rized into individual and collective ones.
Individual tasks are ready to be offered
to users since their execution do not have
direct relationship with the contexts and
tasks of other users. On the other hand,
collective tasks can only be offered to us-
ers after being evaluated. Different tech-
niques can be used in order to perform
tasks classification, such as semantic
analysis, associated contexts analysis and
exchanging messages among users.

• Run collective tasks: the system will search
for conflicts among the collective contexts
presented by the participating users, con-
sidering the current state of physical and
computational shared environments and
the tasks set to be processed. If conflicts
are not detected, the tasks set can be re-
leased and then executed by everyone.
On the other hand, if the activity indicates
a conflict, it must be solved at some ac-
tion level before the tasks can be offered
to the group. It is worth to highlight that
the set of processed tasks may vary from
only one task to all tasks made available
by the application. This activity is per-
formed only to the tasks that were previ-
ously classified as collective.

Figure 1. Ubiquitous and context-aware applications life-cycle diagram.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201138

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

At some point in time, the context-aware
application will be closed by the user or spon-
taneously once all the tasks have already been
performed. At this moment begins the Post-
application phase, which has some associated
activities used to close the application, verify
the quality of the performed actions and store
data and information acquired during the ap-
plication life-time. This phase, in particular,
is application dependent, since each one may
present specific needs.

It is worth to mention that the presented
activities diagram is one possible approach
to model the life-cycle of collective context-
aware applications. The diagram was built
based on the observation of the main activi-
ties performed to the development of context-
aware applications on many studies found in
literature. The model design was performed in
a generic way that is enough to embrace the
general needs of different applications classes.
It can be extended or restricted according to
the application’s characteristics.

Conflict Engine - Detecting and Resolving Con-
flicts: A set of modules must be implemented
together with the collective context-aware ap-
plication in order to allow, whenever necessary,
the execution of the collective tasks processing
activity (activity that belongs to the Applica-
tion phase of the collective context-aware ap-
plication life-cycle). Such set can be developed
as a software framework called Conflict Engine.
Its components are described in the following,
together with a discussion on the implemen-
tation possibilities for them. The organization
of the framework modules, as illustrated by
Figure 2 is a contribution of this work and was
proposed to operate in conjunction with dif-

ferent context-aware software architecture and
independently of the applications.

In order to solve collective conflicts it is nec-
essary that the proposed conciliation solution
modifies the initial application tasks set. In this
case, it is important to choose on which tasks
aspects changes will be performed in order
to use the most appropriated resolution algo-
rithm. Such aspects are called action levels and
some examples of them are tasks parameters,
schedule, grouping, composition, among oth-
ers. It is worth to highlight that modifications
over the tasks may lead to changes over the
physical and/or computational environments.
The Action Levels may be handled dynami-
cally to the Conflict Engine through configu-
ration files such as XML (eXtensible Markup
Language) files or properties files. Such levels
configure a key aspect of the proposed Conflict
Engine, once they allow the use of the same
strategy to solve collective conflicts for differ-
ent applications, in which conflicts may occur
under distinct circumstances.

The conflicts detection module performs a
three-dimensional analysis whose axis are: in-
volved users profiles, environment profile and
application tasks. It can be programmed to use
all data available through these dimensions to
the analysis, as well as only a subset of them.
The choice on how the analysis will be per-
formed depends on the chosen action levels,
which indicates how tasks can be processed
during the search for conflicts occurrence. In
case conflicts can occur due to differences of
values on the users’ profiles and/or the envi-
ronment, an Action Level called “Parameters”,
for example, will be handled to the detection
module. Previously knowing the semantics

Figure 2. Conflict engine modules.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 39

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

associated to the Action Level, the module will
perform a comparative analysis among the
contextual data from the profiles, searching
for the occurrence or not of collective conflicts.

The Conciliation module receives as inputs
all conflicting tasks, profiles of involved us-
ers, environment contextual data, conciliation
action level areas, resolution algorithms and
techniques available and any other necessary
information stored in the software architec-
ture database. This module must perform al-
gorithms that solve the conflicts detected to a
certain Action Level. In case the target appli-
cations are ubiquitous, the module must per-
form conciliation techniques considering
thresholds for resource consumption and qual-
ity of services. As the result, adapted tasks are
produced answering the collective interests,
but also trying to consider as much as possible
the individual demands and current contextu-
al possibilities. Once more, in case the Action
Level called “Parameters” was used, the con-
ciliation module will act over the contextual
data from the related profiles, modifying them
according to what is possible, in a way to solve
the associated collective conflict.

In some cases, as part of the conflicts veri-
fication process or during the execution of
adjusts needed to adapt tasks that involve
collective contexts, it might be necessary the
execution of the Re-startup module, which
contains actions that were already performed
previously by the start-up Pre-application
phase activity.

A collective conflicts resolution methodology:
The conciliation module of the Conflict Engine

can be implemented in several ways, using
diverse algorithms and techniques capable of
offering a solution to the conflicts detected.
Some studies in literature have already ap-
proached this subject, offering specific solu-
tions to certain situations, applications and
contexts (see second section). However, since
they represent particular approaches, they
would not be easily applicable to scenarios
that are different from the ones to which they
were initially proposed.

This work, besides the collective context-
aware applications life-cycle diagram propos-
al, as well as the software framework to col-
lective tasks processing, also defines a novel
implementation methodology to the conflicts
conciliation module, dynamic enough to be
applied to different applications according
to their current situation. Such methodology
was elaborated to collective, ubiquitous and
context-aware applications and it is illustrated
by Figure 3. It aims to guide the execution of
the actions that are necessary to, in case of con-
flicts occurrence, automatically classify and
select resolution algorithms that can perform
the conflicts treatment inside some previously
defined parameters to resources consumption,
according to their availability, and quality of
service levels, reflecting the users demands by
the final satisfaction level towards the used
resolution.

Energy, memory, processing and data com-
munication network are examples of resources
that should be used in a controlled way dur-
ing the conflicts resolution for collective, ubi-
quitous and context-aware applications. The

Figure 3. Novel conflicts resolution methodology.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201140

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

quality of service for such applications should
be measured by the efficiency obtained with
the collective conflicts situation treatment, i.e.,
the individual and collective satisfaction levels
presented by users, after the execution of the
conciliation strategy.

Inside the conciliation module, imple-
mented according to the proposed methodol-
ogy, the execution of the following actions is
defined: classification and selection of the al-
gorithm to be performed, setting it according
to resources consumption and quality levels
agreements and the supervised execution. The
proposed actions, as well as the elements used
and produced by them are described in the fol-
lowing and illustrated by Figure 3.

Algorithm classification and selection: The
classification and selection of algorithms can
be implemented in a simple or sophisticated
way. In order to perform this action, two im-
portant parameters are considered: the amount
of resources available and the desired quality
of services. The conciliation algorithm that is
capable of acting over the configured action
level, using the amount of resources avail-
able and providing a quality of service that is
nearest to the desired one should be selected.
Pre-programmed policies and machine learn-
ing techniques are some examples of interest-
ing implementation options to the algorithms
classification action.

 Considering the possibilities for the algo-
rithms to be used as a way to find a solution to
the occurred conflicts due to applications shar-
ing by a group of users, different options that
have already been described in literature can
be used. Such options diverge by the sophis-
tication and complexity levels and are present
in different areas, such as distributed systems,
game theory, bio-inspired computing and op-
timization.

Agreements and configuration: Once selected,
the conciliation algorithm must pass through
a parameterization phase in order to adequate
itself as much as possible to the application
and its current characteristics, considering
the desired conciliation results and the pos-
sible resources consumption. A set of service
level agreements must be determined to the
selected algorithm, considering which are the
maximum and minimum thresholds to the re-
sources consumption and provided quality of
service levels.

Supervised execution: Finally, the execution
of the conciliation strategy will be performed.
However, this execution will be done super-

vised, and with the goal of not allowing sur-
pass or violation of the limits stated to the
service level agreements in any way. Actuation
strategies or polices for the violation case can
be implemented, such as allowing the selec-
tion of a new algorithm or to distribute grades
to the algorithms according to their adequate-
ness to the service level agreements, using
them on the new iterations to the classification
and selection.

It is worth to highlight that the proposed
methodology is based on the selection of an al-
gorithm among different available options. In
this way, it is expected that an algorithms re-
pository is provided, and that each option in-
cludes the meta-data that reflects information
such as related Action Levels, average energy
consumption, complexity, average services
quality, among others.

The architecture model to be used, that is,
the definition of the network places where the
methodology actions must be performed will
depend on the application characteristics. It
can, therefore, be client-server, peer-to-peer
or any other possible variation over these two
basic models.

The methodology proposed in this work
has an operation profile capable of adapting
itself to different situation as an advantage
over the other collective conflicts resolution
options. It knows and respects the amount of
available resources and tries to find the solu-
tion that will bring the best quality of service
possible. This characteristic is very advanta-
geous for ubiquitous systems, considering the
resources restrictions and dynamic nature for
the configuration of such scenarios.

Collective tourist guide: A case study

A collective tourist guide was implement-
ed as a case study for the methodology pro-
posed in this work. The selected scenario for
this case study is a one-day tourist ride in one
of the historic cities from the state of Minas
Gerais, Brazil. In such city, tourists can per-
form tasks related to the region history, ecol-
ogy, religiosity, gastronomy and shopping.
In this scenario the execution of tasks can be
highly affected by the collected environment
contexts, as well as the profile of each indi-
vidual user. Therefore, this collaborative ap-
plication may be affected by the occurrence of
conflicts, which must be identified and solved
by the conciliation solution implemented in
conjunction with the application.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 41

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

A group of users share a tourist guide com-
putational tool, and, although each of them
has his/her own device, all users will only
perform tasks together, as a group. Before ex-
ecuting any application task, each participant
must perform a task indication, pointing out
which would be his/her preferred task at that
moment, according to personal contexts. The
Conflict Engine will receive all indicated tasks
and execute the verification and conflict reso-
lution modules. The Conflict Engine was imple-
mented in a centralized way. One of the users
devices from the group previously selected
should perform the server role.

Given the goal of testing the operation of
the Conflict Engine and the proposed collec-
tive conflict resolution methodology, three
different conflict conciliation algorithms
were implemented: majority (M), random (R)
and priorities (P). Table 1 presents the main
characteristics of each algorithm, where n
and m in the complexity row (row 1) refer
to the number of users and the number of
tasks, respectively. The table also presents
for each algorithm, the amount of transmis-
sion messages needed to perform the collec-
tive conflicts treatment (row 2) characterized
into levels (high, average and low). Once
started, the Conflict Engine enters a training
and warm-up phase to learn the average sat-
isfaction percentage of each used algorithm
(row 3) and to allow differentiations on the
profiles of each application user. Each algo-
rithm works as follows:

• Majority (M): The most indicated task is
selected;

• Random (R): The task indicated by a ran-
domly obtained user is selected;

• Priorities (P): The task that was most in-
dicated by the users with high priority is
selected.

To observe the methodology behavior, as
well as to compare it with other possible col-
lective conflicts resolution approaches, three
scenarios were designed and simulated:

� Conflict Engine (Eng): implements the
new methodology, which dynamically
selects the conciliation algorithm;

� Resources (Res): selects always the algo-
rithm with smallest energy consumption;

� Satisfaction (Sat): selects always the al-
gorithm with highest users’ satisfaction
percentage.

A collective context-aware application sim-
ulator was developed using the Java language
and used to implement the collective tourist
guide with collective conflicts resolution sup-
port. Each proposed scenario was configured
to contain 50 users, mobile devices with 10 or
30 Joules batteries, 10 different tourist tasks
and the 3 conflict resolution algorithms men-
tioned above. The scenarios were executed us-
ing the simulator 33 times each and the average
results obtained are presented in the following.

 The decision tree algorithm called J48
(Witten and Frank, 2005) was used to classify
and select conciliation algorithms for collec-
tive conflicts. In order to obtain a collective
conflicts treatment algorithm, it is necessary
to provide to the J48 algorithm the residual
energy, the users’ profiles similarity level and
the communication channels quality to the
identification of a classification rule and, con-
sequently, the indication of the most indicated
option considering the circumstance. The de-
cision tree algorithm used was developed in
a way to privilege the selection of the Major-
ity algorithm whenever the residual energy
is high, the users’ profiles similar and/or the
communications channel quality low, the Pri-
orities whenever the users’ profiles are diver-
gent, the residual energy with an average level
and/or the communication channels in good
state, and finally, the Random otherwise.

The conciliation algorithms provided to
the case study do not allow the execution of
parameterization after they are selected by the
methodology. The service level agreements de-
fined to the execution of the selected algorithm
define that it has to provide the highest quality

Table 1. Conflict engine resolution algorithms.

Majority Random Priorities
Complexity O(nm) O(1) O(n)+O(m)
messages Low Medium High
Satisfaction High (52.5%) Low (40.0%) Medium (45.0%)

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201142

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

of service possible, with resources consump-
tion always under devices’ current capacity.
Agreements violation policies were not imple-
mented in this study case.

Quality of service is measured by the per-
centage average satisfaction obtained by us-
ers regarding the final selection of tasks to be
performed. A user is considered satisfied if, in
case of a conflict, the task selected to be per-
formed is the same one s/he has initially indi-
cated. Therefore, by analyzing the satisfaction
of a user on each task indication round, it is
possible to calculate the percentage of times
that s/he was considered satisfied.

A simplified model to the users’ devices en-
ergy consumption was implemented on the sim-
ulator. The computation used to the consump-
tion associated to each algorithm was performed
based on their computational complexity. An
empirical value proportional to low energy
consumption was attributed to the Random
algorithm, whose complexity is constant. The
consumption for the other algorithms was com-
puted based on these values and proportionally
to their respective complexity. Whenever one of
the conciliation algorithms was performed (on
all simulated scenarios) its correspondent ener-
gy amount is consumed from the battery source.

Main achieved results: Table 2 shows how
many users have indicated each available task
for all application’s rounds, considering one
specific simulation from the 33 performed.
One round indicates one simulation instance
in which users must indicate and select one of
the application’s tasks to be performed. The
analysis of this information is performed by
the conflicts verification module as a way to

indicate whether or not an indication of diver-
gence has occurred. Whenever there are users
indicating different tasks in a given round, a
conflict is identified. Otherwise, as the table’s
last row shows, all users converge to the same
task and, in this case, a conflict does not occur.

Since indications depend basically on
users’ profiles, each user is free to indicate any
task. Once performed, a task becomes unavail-
able for indication in subsequent rounds. Ac-
cording to the previously described policies,
the methodology selects one of the available
algorithms to perform the conflict resolution
in case it effectively occurs.

Considering specifically the Conflict En-
gine scenario, once detected the occurrence
of a conflict, it is initiated a work to find an
algorithm that is able to solve the generated
impasse. Figures 4, 5 and 6 present the opera-
tion of the methodology during the execution
of one simulation (Conflict Engine scenario).
They show the parameters values used by the
scenario to the selection of the algorithm to be
used at each round during a specific simula-
tion. The graph presented by Figure 4 shows
the similarity among users profiles at each
round, which is classified between very heter-
ogeneous and very homogeneous. Such analy-
sis is performed based on the tasks indications
performed by users during the round. The
more divergent the indications are the more
heterogeneous is considered the group’s pro-
file. The graph presented by Figure 5 shows
the quality of the communication channels
during each round. A uniform probability dis-
tribution was used to generate this communi-
cation network quality profile.

Table 2. Number of indications per task at each round.

Tasks
Conflict Performed

Task0 1 2 3 4 3 6 7 8 9

Round 0 04 06 07 04 03 04 03 07 04 04 yes 7

Round 1 05 07 08 07 07 03 06 00 06 01 yes 2

Round 2 04 11 00 05 06 06 06 00 03 07 yes 1

Round 3 04 00 00 07 02 10 10 00 09 08 yes 3

Round 4 12 00 00 00 11 07 06 00 04 10 yes 5

Round 5 09 00 00 00 08 00 09 00 09 15 yes 9

Round 6 15 00 00 00 07 00 13 00 15 00 yes 6

Round 7 15 00 00 00 24 00 00 00 11 00 yes 8

Round 8 22 00 00 00 28 00 00 00 00 00 yes 4

Round 9 50 00 00 00 00 00 00 00 00 00 no 0

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 43

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

The graph presented by Figure 6 presents
the percentage of residual energy of the end
users’ devices. This information is important
to the execution of the Conflict Engine sce-
nario once it allows the selection of algorithms
that present a reasonable average satisfac-
tion, without overconsumption of the scarce
resources available. Considering all the in-
formation contained in the presented table
and graphs, the conciliation algorithms are
dynamically selected. The graph presented by
Figure 7 shows all the choices made during
each performed round. At each moment, the
trade-off between resources and satisfaction is

analyzed and a choice that contemplates in the
best way possible both sides is made.

Consider for example the first indication
round presented by Table 2. A conflict has
occurred since users did not select the same
task. In this case the methodology had to se-
lect a conflict resolution algorithm among
the available ones. According to the previ-
ous explained rules, the majority algorithm
was performed.

Observe the fifth indication round. Since
users have indicated different tasks, once
more a conflict was detected. The Random
algorithm, which is the one with the smallest

Figure 4. Users profiles similarity.

Figure 5. Network channels quality.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201144

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

associated complexity and therefore consumes
less energy, was selected.

Tables 3 and 4 present a comparison among
the three scenarios simulated in this work.
They present the average users’ satisfaction,
average energy consumption and last per-
formed round for each of them. The maximum
value for the simulated mobile devices’ battery
capacity was varied between 10 (Table 3) and
30 (Table 4) Joules. Such values were empiri-
cally selected according to the operation of the
simulation environment used in this work, in
a way to allow the occurrence of two distinct
situations: total and partial exhaustion of the

used batteries. The goal of such variation is to
observe the behavior of the simulated scenar-
ios in front of resources scarceness, as well as
with abundance of them.

The results presented show the adaptive
behavior of the scenario that implements the
proposed methodology. When the devices’
batteries presented only 10 Joules, the Con-
flict Engine scenario behavior is closer to Re-
sources’ one. Even though trying to preserve
resources from the moment that the batteries
reach their lowest levels, the methodology
keeps observing the users’ satisfaction. There-
fore, this scenario is able to reach, in average,

Figure 7. Selected algorithms.

Figure 6. Residual energy.

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 45

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

the penultimate execution round, with a sat-
isfaction level that is higher than the one pre-
sented by the Resource’s scenario. It is worth
to highlight that the Satisfaction scenario, al-
though providing the best satisfaction aver-
age for the users, could only perform, in aver-
age, until the sixth round. When the devices’
batteries have 30 Joules of energy, the Engine
scenario tends to behave as that one that aims
at maximizing the users’ satisfaction. The en-
ergy consumption of both scenarios is iden-
tical, and the average satisfaction acquired
very similar. However, the Resources scenar-
io in this case, although it has consumed less
energy amount, presented the lowest satisfac-
tion rate to the users.

Finally, Figures 8 and 9 present, respective-
ly, the energy consumption and users’ average
percentage satisfaction parameters for each
round and during one simulation execution.
The graph presented by Figure 8 shows that
the energy consumption of the Engine Scenario
is very close to the one presented by the Sat-
isfaction scenario. However, the latter could
only keep their devices alive until the sixth
round, while the users’ devices of the former
still has around 20% of their batteries and can,
therefore, be operational until the penultimate
round. Although presenting smaller associat-
ed energy consumption, the graph presented
by Figure 9 shows that the users’ satisfaction of
the resources scenario is always the worst one,
once the algorithm with the lowest resources
consumption presents also the lowest average
satisfaction level. The Engine scenario oscil-
lates between the other two scenarios’ curves,
providing a trade-off between satisfaction and
consumption, according to the choices made
for the algorithms to be used.

The joint analysis of both graphs show that
the methodology implemented by the scenar-
io Engine has accomplished the desired goals,
once it has became closer to the best results of
the other two simulated scenarios. It was pos-
sible to keep the operation of the scenario until
the penultimate round, with an average users’
satisfaction level very close to the maximum
possible value, considering the algorithms that
were available to use.

The acquired results, besides showing the
correct operation of the Conflict Engine sce-
nario, demonstrated that the goals for this
computer supported collaborative work meth-
odology have been reached. According to Ta-
ble 3, although the Resources scenario presents
the smallest energy consumption average and
the Satisfaction scenario the highest average
for users’ satisfaction, the Conflict Engine sce-
nario presents a satisfaction average very close
to the Satisfaction one with smaller related
average energy consumption. In other words,
users felt satisfied with the tasks selected in
conflict cases and still presented interesting
average energy consumption. Although pro-
viding the best user satisfaction percentage,
the users devices of the Satisfaction scenario
only operates until the sixth round due to lack
of energy.

Conclusion

This work has presented a discussion on a
specific problem found in context-aware ubiq-
uitous systems shared by a group of users:
the occurrence of conflicts on the adaptation
of services due to the incompatibility among
the users’ profiles and/or the shared environ-
ment. Concepts related to the theme were

Table 3. Energy Consumption and users satisfaction averages (10 Joules).

Engine Resources Satisfaction
Satisfaction 33.0 28.0 35.0
Energy 98.0 45.0 100.0
Round 8 9 6

Table 4. Energy consumption and users satisfaction averages (30 Joules).

Engine Resources Satisfaction
Satisfaction 35.0 30.0 36.0
Energy 45.0 15.0 45.0
Round 9 9 9

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 201146

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

formalized, and in order to solve this prob-
lem, this work presented an activity diagram
to the ubiquitous context-aware applications
life-cycle, a framework to the development of
modules responsible for processing collective
tasks, called Conflict Engine, and a methodol-
ogy to perform techniques to the collective
conflicts resolution.

A case study based on the implementation
of a collective tourist guide was presented as
a way to illustrate the collective applications
concept and, therefore, to validate all the
above propositions.

As future research directions to the pre-
sented work, we intent to implement other

case studies as a way to evaluate the occur-
rence of a higher number of conflicts for dif-
ferent Action Levels and to implement and
evaluate new algorithms to collective con-
flicts treatment.

References

ABOWD, G.D.; DEY, A.K.; BROWN, P.J.; DAVIES,
N.; SMITH, M.; STEGGLES, P. 1999. Towards
a better understanding of context and context-
awareness. In: HUC’99 NTERNATIONAL
SYMPOSIUM ON HANDHELD AND UBIQ-
UITOUS COMPUTING, 1, London, 1999. Proce-
edings... Berlin, Springer-Verlag, p. 304-307.

 http://dx.doi.org/10.1007/3-540-48157-5_29

Figure 8. Energy consumption per scenario (one snapshot).

Figure 9. Users satisfaction per scenario (one snapshot).

Journal of Applied Computing Research, vol. 1, n. 1, p. 33-47, Jan/Jun 2011 47

Silva, Ruiz and Loureiro | Confl icts treatment for ubiquitous collective and context-aware applications

ARDISSONO, L.; GOY, A.; PETRONE, G.; SEG-
NAN, M.; TORASSO, P. 2002. Tailoring the
recommendation of tourist information to he-
terogeneous user groups. In: S. REICH; M.M.
TZAGARAKIS; P.M.E. de BRA, Hypermedia:
Openness, Structural Awareness, and Adaptivity.
Berlin, Springer-Verlag, 2266:228-231.

 http://dx.doi.org/10.1007/3-540-45844-1_26
BALDAUF, M.; DUSTDAR, S.; ROSENBERG, F.

2007. A survey on context-aware systems. Inter-
national Journal of Ad Hoc and Ubiquitous Compu-
ting, 2(4):263-277.

 http://dx.doi.org/10.1504/IJAHUC.2007.014070
BRÉZILLON, P.; ARAUJO, R.M. 2005. Reinforcing

shared context to improve collaboration. Revue
d’Intelligence Artificielle, 19(3):537-556.

 http://dx.doi.org/10.3166/ria.19.537-556
DEY, A.K. 2001. Understanding and using context.

Personal Ubiquitous Computing, 5(1):4-7.
 http://dx.doi.org/10.1007/s007790170019
EDWARDS, W.K.; GRINTER, R.E. 2001. At home

with ubiquitous computing: Seven challenges.
In: G.D. ABOWD; B. BRUMITT; S. SHAFER,
Ubicomp 2001: Ubiquitous Computing. Berlin,
Springer-Verlag, p. 256-272.

 http://dx.doi.org/10.1007/3-540-45427-6_22
GREENFIELD, A. 2006. Everyware: The dawning age

of ubiquitous computing. Berkeley, New Riders
Press, 267 p.

MASTHOFF, J. 2004. Group modeling: Selecting a
sequence of television items to suit a group of
viewers. User Modeling and User-Adapted Interac-
tion, 14(1):37-85.

http://dx.doi.org/10.1023/B:USER.0000010138.79319.fd
MCCARTHY, J.E.; ANAGNOST, T.D. 2000. Musi-

cfx: an arbiter of group preferences for compu-
ter supported collaborative workouts. In: ACM
CONFERENCE ON COMPUTER SUPPORTED
COOPERATIVE WORK, New York, 2000. Proce-
edings... ACM, New York, p. 363-372.

 http://dx.doi.org/10.1145/289444.289511

ROY, N.; ROY, A.; DAS, S.K. 2006. Context-aware
resource management in multi-inhabitant smart
homes: A nash h-learning based approach. In:
ANNUAL IEEE INTERNATIONAL CONFE-
RENCE ON PERVASIVE COMPUTING AND
COMMUNICATIONS, 4, Washington, 2006.
Proceedings... Washington, p. 148-158.

 http://dx.doi.org/10.1109/PERCOM.2006.18
SCHILIT, B.; ADAMS, N.; WANT, R. 1994. Con-

text-aware computing applications. In: IEEE
WORKSHOP ON MOBILE COMPUTING SYS-
TEMS AND APPLICATIONS, 1, Santa Cruz,
1994. Proceedings... Santa Cruz, p. 85-90.

 http://dx.doi.org/10.1109/WMCSA.1994.16
SHIN, C.; WOO, W. 2005. Conflict resolution method

utilizing context history for context-aware ap-
plications. In: INTERNATIONAL WORKSHOP
ON EXPLOITING CONTEXT HISTORIES IN
SMART ENVIRONMENTS (ECHISE’05), 1, Mu-
nich, 2005. Proceedings... Munich, p. 105-110.

VIEIRA, V.; TEDESCO, P.; SALGADO, A. C. 2009.
A process for the design of context-sensitive
systems. In: INTERNATIONAL CONFERENCE
ON COMPUTER SUPPORTED COOPERATIVE
WORK IN DESIGN, 13, Santiago, 2009. Procee-
dings... Santiago, p. 143-148.

 http://dx.doi.org/10.1109/CSCWD.2009.4968049
WEISER, M. 1993. Some computer science issues

in ubiquitous computing. Communications of the
ACM, 36(7):75-84.

 http://dx.doi.org/10.1145/159544.159617
WITTEN, I.H.; FRANK, E. 2005. Data mining: practi-

cal machine learning tools and techniques. Amster-
dam/Boston, Morgan Kaufman, 525 p.

Submitted on September 30, 2010.
Accepted on October 10, 2010.

