
Abstract: This paper demonstrates the use of a new connectionist approach, called IGMN (standing for 
Incremental Gaussian Mixture Network) in some state-of-the-art research problems such as incremental 
concept formation, reinforcement learning and robotic mapping. IGMN is inspired on recent theories about 
the brain, especially the Memory-Prediction Framework and the Constructivist Artificial Intelligence, which 
endows it with some special features that are not present in most neural network models such as MLP, 
RBF and GRNN. Moreover, IGMN is based on strong statistical principles (Gaussian mixture models) and 
asymptotically converges to the optimal regression surface as more training data arrive. Through several 
experiments using the proposed model it is also demonstrated that IGMN learns incrementally from data 
flows (each data can be immediately used and discarded), it is not sensible to initialization conditions, 
does not require fine-tuning its configuration parameters and has a good computational performance, thus 
allowing its use in real time control applications. Therefore, IGMN is a very useful machine learning tool for 
concept formation and robotic tasks.
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Introduction

Traditional artificial neural network (ANN) 
models, such as Multi-layer Perceptron (MLP) 
(Rumelhart et al., 1986), Radial Basis Functions 
(RBF) network (Powell, 1987) and General Re-
gression Neural Network (GRNN) (Specht, 
1991), are based on Cybernetics, a science 
devoted to understand the phenomena and 
natural processes through the study of com-
munication and control in living organisms, 
machines and social processes (Ashby, 1956). 
Cybernetics had its origins and evolution in 
the second-half of the 20th century, especially 
after the development of the McCulloch-Pitts 
neural model (McCulloch and Pitts, 1943). Ac-
cording to Cybernetics, the brain can be seen 
as an information system that receives infor-
mation as input, performs some processing 
over this information and outcomes the com-

puted results as output. Therefore, in tradi-
tional connectionist models the information 
flow is unidirectional, from the input to the 
hidden layer (processing) and then to the out-
put layer (Pfeifer and Scheier, 1994).

Although neural networks can be success-
fully used in several tasks, including signal 
processing, pattern recognition and robotics, 
most ANN models have some disadvantages 
that difficult their use in on-line tasks such 
as incremental concept formation and robot-
ics. The Backpropagation learning algorithm 
(Rumelhart et al., 1986), for instance, requires 
several scans over all training data, which 
must be complete and available at the begin-
ning of the learning process, to converge for a 
good solution. Moreover, after the end of the 
training process the synaptic weights are “fro-
zen”, i.e., the network loses its learning capa-
bilities. These drawbacks highly contrast with 

1 Article based on Doctoral Thesis of Milton Roberto Heinen called A Connectionist Approach for Incremental Function Ap-
proximation and On-line Tasks (Heinen, 2011).
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the human brain learning capabilities because: 
(i) we do not need to perform thousands of 
scans over the training data to learn something 
(in general we are able to learn using few ex-
amples and/or repetitions); (ii) we are always 
learning new concepts as new “training data” 
arrive, i.e., we are always improving our per-
formance through experience; and (iii) we do 
not have to wait until sufficient information 
arrives to make a decision, i.e., we can use 
partial information as it becomes available. 
Besides being not biologically plausible, these 
drawbacks difficult the use of ANNs in on-
line robotics, because in this kind of applica-
tion the training data are just instantaneously 
available to the learning system and a decision 
must be made using the information available 
at the moment.

In Heinen (2011) and Heinen and Engel 
(2010a, 2010b, 2010c) a new artificial neural 
network model, called IGMN2 (standing for 
Incremental Gaussian Mixture Network), was 
proposed to tackle great part of these prob-
lems. IGMN is based on parametric probabi-
listic models (Gaussian mixture models), that 
have nice features from the representational 
point of view, describing noisy environments 
in a very parsimonious way, with parameters 
that are readily understandable (Engel, 2009). 
Moreover, IGMN is inspired on recent theo-
ries about the brain, especially the Memory-
Prediction Framework (MPF) (Hawkins, 2005) 
and the constructivist artificial intelligence 
(Drescher, 1991), which endows it with some 
unique features such as: (i) IGMN learns incre-
mentally using a single scan over the training 
data; (ii) the learning process can proceed per-
petually as new training data arrive; (iii) it can 
handle the stability-plasticity dilemma and 
does not suffer from catastrophic interference; 
(iv) the neural network topology is defined au-
tomatically and incrementally; and (v) IGMN 
is not sensible to initialization conditions.

The main goal of this paper is to present the 
application of IGMN in some practical tasks 
such as concept formation, reinforcement 
learning and robotic mapping, thus demon-
strating that IGMN is a powerful machine 
learning tool that can be applied to many 
state-of-the-art computational and engineer-
ing problems. The remaining of this paper is 
organized as follows. Section IGMN presents 

the main aspects of IGMN and its neural ar-
chitecture. Section Concept Formation discusses 
the use of the proposed neural network mod-
el for incremental concept formation (Engel 
and Heinen, 2010a, 2010b; Heinen and Engel, 
2010d), which is an important task in machine 
learning and robotics. Section Reinforcement 
Learning describes how IGMN can be used 
as a function approximator in reinforcement 
learning (RL) tasks (Heinen and Engel, 2010b). 
Section Feature-based mapping presents a new 
feature-based mapping algorithm (Heinen 
and Engel, 2010d, 2010e) that represents the 
environment using the multivariate Gaussian 
mixture models rather than grid cells or line 
segments. Finally, Section Conclusion provides 
some final remarks and perspectives.

IGMN

Figure 1 shows the general architecture of 
IGMN, which is inspired in the Memory-Pre-
diction Framework (MPF) (Hawkins, 2005). It 
is composed by an association region P (in the 
top of this figure) and many cortical regions, 
NA, NB... NS. All regions have the same size, 
i.e., the number of neurons, M, is always the 
same for all regions. Initially there is a single 
neuron in each region (i.e., M = 1), but more 
neurons are incrementally added when neces-
sary using an error driven mechanism. Each 
cortical region NK receives signals from the kth 
sensory/motor modality, k (in IGMN there is 
no difference between sensory and motor mo-
dalities), and hence there is a cortical region 
for each sensory/motor modality.

An important feature of IGMN is that all 
cortical regions execute a common function, 
i.e., they have the same kind of neurons and 
use the same learning algorithm. Moreover, all 
cortical regions can run in parallel, which im-
proves the performance especially in parallel 
architectures. More specifically, each neuron j 
of region NK performs the following operation:

p(k|j) = 1

(2π)
DK

2  |CK
j |

 e–�(k – μK
j  )T CK

j  
–1 (k–μK

j  ),  (1)

i.e., it uses a multivariate Gaussian activa-
tion function, where DK is the dimensionality 
of k (different sensory/motor modalities k can 

2 Initially IGMN was called IPNN, but the name was changed to avoid misunderstandings with the Specht’s PNN model 
(Specht, 1990).
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have different dimensions DK). Each neuron j 
of NK maintains a mean vector μj

K and a cov-
ariance matrix Cj

K. These covariance matrices 
are initialized using a user defined fraction δ 
of the overall variance (e.g., δ = 1/100) of the 
corresponding attributes, estimated from the 
range of these values according to:

σ
K
ini = δ [max(k) – min(k)],   (2)

where [min(k), max(k)] defines the domain 
of a sensory/motor modality k. It is important 
to say that it is not necessary to know the exact 
minimum and maximum values along each 
dimension to compute σK

ini, but instead just 
the approximate domain of each feature.

Another important aspect of IGMN is that 
the neural regions are not fully connected, i.e., 
the neuron j of NK is connected just to the jth 
neuron of P, but this connection is bidirec-
tional. It is also important to notice that there 
are no synaptic weights in these connections, 
i.e., all IGMN parameters are stored in the 
neurons themselves. A bottom-up connection 
between NK and P provides the component 
density function p(k|j) to the jth neuron in P. 
Therefore, a neuron j in the association region 
P is connected with the jth neuron of all corti-
cal regions N via bottom-up connections and 
computes the a posteriori probability using 
the Bayes’ rule:

p(j|z) = 
       p(a|j) p(b|j) ... p(s|j) p(j)

              ∑M
q=1 p(a|q) p(b|q) ... p(s|q) p(q)

 (3)

where it is considered that the neural net-
work has an arbitrary number, s, of cortical 
regions and z = {a, b, ..., s}. The dotted lines in 

Figure 1 indicate the lateral interaction among 
the association units for computing the de-
nominator of the Bayes’ rule. The dotted lines 
in Figure 1 above indicate the lateral interac-
tion among the association units for comput-
ing the denominator in (3). Each neuron j of 
the association region P maintains its a priori 
probability, p(j), an accumulator of the a pos-
teriori probabilities, spj, and an association 
matrix to store the correlations among each 
sensory/motor modality. The top-down con-
nections between P and NK, on the other hand, 
returns expectations to NK that are used to esti-
mate k when it is missing.

IGMN has two operation modes, called 
learning and recalling. But unlike most ANN 
models, in IGMN these operations do not need 
to occur separately, i.e., the learning and recall-
ing modes can be intercalated. In fact, even af-
ter the presentation of a single training pattern 
the neural network can already be used in the 
recalling mode (the acquired knowledge can 
be immediately used), and the estimates be-
come more precise as more training data are 
presented. Moreover, the learning process can 
proceed perpetually, i.e., the neural network 
parameters can always be updated as new 
training data arrive.

As described before, IGMN adopts an 
error-driven mechanism to decide if it is nec-
essary to add a neuron in each region for ex-
plaining a new data vector zt. This error-driven 
mechanism is inspired on the Constructivist 
IA (Drescher, 1991; Chaput, 2004), where the 
accommodation process occurs when it is nec-
essary to change the neural network structure 
(i.e. to add a neuron in each region) to account 
for a new experience which is not explained for 
the current schemata (i.e., the current ANN 

Figu re 1. General architecture of IGMN.
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structure), and the assimilation process occurs 
when the new experience is well explained in 
terms of the existing schemata (Piaget, 1954). 
In mathematical terms, the ANN structure is 
changed if the instantaneous approximation 
error ε is larger than a user specified thresh-
old εmax. More details about the IGMN learning 
and recalling operation modes can be found at 
(Heinen, 2011). Next sections demonstrate the 
use of IGMN in many practical problems such 
as concept formation, reinforcement learning 
and robotics.

Concept formation

One of our primary motivations in devel-
oping IGMN was to tackle problems like those 
encountered in autonomous robotics. To be 
more specific, let us consider the so called per-
ceptual learning, which allows an embodied 
agent to understand the world (Burfoot et al., 
2008). Here an important task is the detection 
of concepts such as “corners”, “walls” and 
“corridors” from the sequence of noisy sensor 
readings (e.g., sonar data) of a mobile robot. 
The detection of these regularities in data flow 
allows the robot to localize its position and to 
detect changes in the environment (Thrun et 
al., 2006).

Although concept formation has a long 
tradition in machine learning literature, in the 
field of unsupervised learning, most methods 
assume some restrictions in the probabilistic 
modelling (Gennari et al., 1989) which pre-
vent their use in online tasks. The well known 
k-means algorithm (MacQueen, 1967; Tan et 
al., 2006), for instance, represents a concept as 
a mean of a subset or cluster of data. In this 
case, each data point must deterministically 
belong to one concept. The membership of a 
data point to a concept is decided by the min-
imum distance to the means of the concepts. 
To compute the means, all data points be-
longing to every concept are averaged using a 
fixed number of concepts along all the learn-
ing process. For learning probabilistic mod-
els, a very used approach is the batch-mode 
EM algorithm (Dempster et al., 1977), which 
follows a mixture distribution approach for 
probabilistic modelling. Like k-means, this al-
gorithm requires that the number of concepts 
be fixed and known at the start of the learn-
ing process. Moreover, the parameters of each 
distribution are computed through the usual 
statistical point estimators, a batch-mode ap-
proach which considers that the complete 

training set is previously known and fixed 
(Tan et al., 2006).

These restrictions make the k-means and 
EM algorithms not suitable for on-line concept 
formation, because in this kind of task usually 
each data point is just instantaneously avail-
able, i.e., the learning system needs to build a 
model, seen as a set of concepts of the envi-
ronment, incrementally from data flows. The 
IGMN model, on the other hand, is able to 
learn from data flows in an incremental (new 
concepts can be added by demand) and online 
(it does not require that the complete training 
set be previously known and fixed) way, which 
makes it a good solution for concept forma-
tion in on-line robotic tasks. Moreover, unlike 
the traditional neural network models (e.g., 
MLP and GRNN), the IGMN hidden neurons 
are not “black boxes”, and thus the Gaussian 
units can be interpreted as representations of 
the input space, i.e., high level concepts (En-
gel and Heinen, 2010a). The remaining of this 
section is organized as follows: Subsection Re-
lated work presents some related work about 
concept formation, and Subsection Concept 
formation experiments describes how IGMN can 
be used to build high-level concepts incremen-
tally from data flows.

Related work

In the past different approaches were pre-
sented to create high level concepts from sonar 
data in robotic tasks. As a typical example of 
these approaches, Nolfi and Tani (1999) pro-
posed a hierarchical architecture to extract 
regularities from time series, in which higher 
layers are trained to predict the internal state 
of lower layers when such states significantly 
change. In this approach, the segmentation was 
cast as a traditional error minimization prob-
lem (Haykin, 2008), which favours the most 
frequent inputs, filtering out less frequent in-
put patterns as being “noise”. The result is that 
the system recognizes slightly differing walls 
that represent frequent input patterns, as dis-
tinct concepts, but is unable to detect corridors 
or corners that are occasionally (infrequently) 
encountered. Moreover, this algorithm has 
scarce means to handle the stability-plasticity 
dilemma and to appropriately model the data.

Focusing in change detection, Linåker and 
Niklasson (2000a, 2000b) proposed an adap-
tive resource allocating vector quantization 
(ARAVQ) network, which stores moving av-
erages of segments of the data sequence as 
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vectors allocated to output nodes of the net-
work. New model vectors are incorporated to 
the model if a mismatch between the moving 
average of the input signal and the existing 
model vectors is greater than a specified thresh-
old, and a minimum stability criterion for the 
input signal is fulfilled. The main advantage of 
this approach over the Nolfi and Tany’s model 
is that the ARAVQ network requires a single 
scan over the training data to converge. More-
over, it can add hidden neurons (i.e., to create 
new concepts) incrementally from data flows. 
However, like other distance-based clustering 
algorithms its induced model is equivalent to 
a set of equiprobable spherical distributions 
sharing the same variance, what badly fits to 
a data flow with temporal correlation, better 
described by elongated elliptical distributions. 
Next subsection describes some experiments 
in which IGMN is used to learn high-level con-
cepts in an incremental and efficient way.

Concept formation experiments

This subsection describes some experi-
ments in which IGMN is used to create high-
level concepts from data flows. In these experi-
ments, the data consist of 10 continuous values 
provided by the Pioneer 3-DX simulator soft-
ware ARCOS (Advanced Robot Control & Op-
erations Software). A Pioneer 3-DX robot has 8 
sonar sensors, disposed in front of the robot at 
regular intervals, and a two-wheel differential, 
reversible drive system with a rear caster for 
balance. Figure 2 shows a Pioneer 3-DX robot 
and the disposition of its sonar sensors.

The IGMN network used in these experi-
ments has two cortical regions, NS and NV. 
The cortical region NS tackles the values of 
the sonar readings, i.e., s = {s1, s2, ..., s8}, and 
the cortical region NV receives the speeds 
applied at the robot wheels at time t, i.e., v 
= {v1, v2}. To decide what is the most active 

(a) Front view (b) Side view

(c) Aaray of sonar sensors

Figure 2. Pioneer 3-DX mobile robot.
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concept at time t, the maximum likelihood 
(ML) hypothesis ℓ = arg maxj [p(j|z)], where 
z = {s, v}, is used. It is important to note that 
IGMN computes and maintains the a pos-
teriori probabilities of all concepts at each 
time, and hence it can be used in applica-
tions such as the so called multi-hypothesis 
tracking problem in robotic localization do-
mains (Thrun et al., 2006; Filliat and Meyer, 
2003). The configuration parameters used in 
the following experiments are δ = 0.01 and 
εmax = 0.1. It is important to say that no ex-
haustive search was performed to optimize 
the configuration parameters.

The first experiment was accomplished in 
an environment composed of six corridors 
(four external and two internal), and the ro-
bot performed a complete cycle in the external 
corridors. Figure 3 shows the segmentation of 
the trajectory obtained by IGMN when the ro-
bot follows the corridors of this environment. 
IGMN created four probabilistic units, corre-
sponding to the concepts “corridor” (1: plus 
sign), “wall at right” (2: circle), “corridor/ob-
stacle front” (3: asterisk) and “curve at left” (4: 
cross). The symbols in the trajectory of Figure 
3 represent the ML hypothesis in each robot 
position, and the black arrow represents the 
robot starting position and direction. More 
details about this experiment can be found at 
(Engel and Heinen, 2010a).

The next experiment was performed in 
a more complex environment, composed 
by two different sized rooms connected by 
a short corridor. This environment was in-
spired in those used by Linåker and Nik-
lasson (2000a, 2000b). Figure 4 shows the 

segmentation performed by IGMN in this ex-
periment. IGMN has created seven clusters, 
corresponding to the concepts ”wall at right” 
(1: plus sign), ”corridor” (2: circle), ”wall at 
right/obstacle front” (3: asterisk), ”curve at 
left” (4: cross), ”bifurcation/obstacle front” (5: 
square), ”bifurcation/curve at right” (6: five-
pointed star) and ”wall at left/curve at right” 
(7: hexagram).

Comparing these experiments, it can be no-
ticed that some similar concepts, like “curve at 
left” and “obstacle front”, were discovered in 
both experiments, although these environments 
are different (the environment shown in Figure 
3 has many corridors whilst that one shown in 
Figure 4 has two large rooms and just one short 
corridor). This points out that concepts extract-
ed from a data flow corresponding to a specific 
sensed environment are not restricted to this 
environment, but they form an alphabet that 
can be reused in other contexts. This is a useful 
aspect that can improve the learning process in 
more complex environments.

Reinf orcement learning

This section presents a couple of experi-
ments, published in (Heinen and Engel, 2010b), 
in which IGMN is used as a function approxi-
mator in reinforcement learning (RL) algo-
rithms. Traditional reinforcement learning 
techniques (e.g., Q-learning and Sarsa) (Sutton 
and Barto, 1998) generally assume that states 
and actions are discrete, which seldom occurs 
in real mobile robot applications. To allow con-
tinuous states and actions directly in RL (i.e., 
without discretization) it is necessary to use 

Figure 3. Segmentation of the trajectory.
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function approximators like MLP (Utsunomiya 
and Shibata, 2009) or RBF (Doya, 2000; Basso 
and Engel, 2009) neural networks. According 
to Smart (2002), for a function approximator 
be successfully used in reinforcement learning 
tasks (i.e., for converging to a good solution) it 
must be: (i) incremental (it should not have to 
wait until a large batch of data points arrives 
to start the learning process); (ii) aggressive 
(it should be capable of producing reasonable 
predictions based on just a few training points); 
(iii) non-destructive (it should not be subject 
to destructive interference or “forgetting” past 
values); and (iv) must provide confidence esti-
mates of its own predictions. Thus, according to 
these principles IGMN is very suitable for rein-
forcement tasks, i.e., it satisfies all the require-
ments described above. The rest of this section 
is organized as follows. Subsection Related work 
presents some related work in the field of rein-
forcement learning using continuous states and 
actions. Subsection Selecting actions using IGMN 
describes how IGMN can be used as a function 
approximator in a RL algorithm. Subsections 
Pendulum with limited torque and Robot soccer 
task describe some experiments performed to 
evaluate the proposed model in reinforcement 
learning tasks.

Related work

In the past, several approaches were pro-
posed to allow continuous states and actions in 
RL algorithms. As an example of these approach-
es, in Doya (2000, 1996) a continuous formula-
tion of the temporal difference TD(λ) algorithm 
is presented (Sutton, 1988). This formulation 
uses normalized radial basis function (RBF) 

networks to approximate the continuous state 
values and to learn the continuous actions. Ac-
cording to Doya (2000), RBF networks are more 
suitable for reinforcement learning tasks than 
MLP (Rumelhart et al., 1986; Haykin, 2008) be-
cause they perform a local encoding of the input 
receptive fields, which avoids the catastrophic 
interference, i.e., the knowledge acquired in a 
region of the input space does not destroy the 
knowledge acquired previously in another re-
gion of the input space (Basso and Engel, 2009). 
However, in the algorithm described in Doya 
(2000, 1996) the radial basis functions are simply 
uniformly distributed among the input space 
and kept fixed during all the learning process, 
i.e., just the (linear) output layer is adjusted by 
the learning algorithm. Therefore, this algorithm 
does not adjust the network parameters of the 
hidden layers, which is a complex and nonlinear 
task. Moreover, it requires a priori knowledge to 
setup the neural units and wastes computational 
resources in unimportant regions of the input 
space.

Another interesting approach to allow 
continuous states and actions in RL is the Lo-
cally Weighted Regression (LWR) algorithm 
proposed by Smart and Kaelbling (2000). Al-
though at a first glance LWR seems very prom-
ising, it has a strong drawback: it requires that 
all data points received so far to be stored and 
analyzed at each decision making (i.e., it is a 
“lazy learning” algorithm). Thus, this algo-
rithm is not suitable for on-line robotic tasks, 
because in this kind of task the sensory data 
are very abundant, which makes the algorithm 
very slow and requires large amount of memo-
ry to store all previous data points. The IGMN 
learning algorithm, on the other hand, does 

Figure 4. Segmentation of the trajectory.
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not require that any previous data to be stored 
or revisited, i.e., each training data can be im-
mediately used and discarded. This makes 
the proposed model more suitable to be used 
in on-line robotic tasks, especially when the 
learning process must occur perpetually (i.e., 
when there are no separate phases for learning 
and use). The next subsection describes how 
IGMN can be used to select continuous actions 
in a RL algorithm.

Selecting actions using IGMN

Implementing a reinforcement learning al-
gorithm using IGMN can be straightforward 
– we just need to use three cortical regions, 
NS, NA and NQ, to represent the states, s, ac-
tions, a, and the Q(s, a) values, respectively. If 
the actions are discrete, then it is very easy to 
select the best action at each time: we just need 
to propagate the current state and all possible 
actions in the corresponding cortical regions 
and select the action which has the highest Q 
value, i.e.:

a* = arg max [Q(s,a)].   (4)
                 a

Moreover, the exploration x exploitation 
dilemma can be tackled using an action selec-
tion mechanism such as softmax and ε-greedy 
(Sutton and Barto, 1998). On the other hand, if 
the actions are continuous, the action selection 
process becomes a general optimization prob-
lem far from trivial (Smart, 2002).

In this paper a new strategy, proposed in 
(Heinen, 2011), is used for selecting continuous 
actions in reinforcement learning algorithms. 
This strategy consists in first propagating 
through the IGMN network the current state, s, 
and the maximum value, Qmax, currently stored 
in the corresponding Gaussian units, i.e.:

Qmax = max (μQ
j  ).   (5)

            j∈M

Then the Qmax value is propagated through 
the cortical region NQ, the associative region P 
is activated and the greedy action â is comput-
ed in the cortical region NA.

To tackle the exploration x exploitation di-
lemma, instead of simply choosing the greedy 
action â at each moment we can randomly se-
lect the actions using the estimated covariance 
matrix ĈA, i.e., the actions can be randomly se-
lected using a Gaussian distribution of mean 
â and covariance matrix ĈA. In the beginning 

of the learning process, when M = 0, the ini-
tial action can be randomly chosen. The main 
advantage of this action selection mechanism 
is that it enables high exploration rates in the 
beginning of the learning process, when the 
Gaussian distributions are larger, and this 
exploration is reduced as the confidence esti-
mates become stronger. Moreover this mecha-
nism does not require any optimization tech-
nique (just the IGMN itself), which makes the 
proposed RL algorithm very fast. Hence, this 
mechanism allows an exploration strategy 
based on statistical principles which do not re-
quire ad-hoc parameters.

The following subsections describe two ex-
periments performed to evaluate the proposed 
model in reinforcement learning tasks using 
continuous states and actions: a pendulum 
with limited torque and a robot soccer task in a 
simulated environment. The configuration pa-
rameters used in these experiments are δ = 0.01 
and εmax = 0.1. More details about these experi-
ments are found at (Heinen and Engel, 2010b).

Pendulum with limited torque

This experiment, also performed by Doya 
(1996, 2000; Heinen and Osório, 2006b; Sutton, 
1988) to evaluate the Doya’s continuous actor-
critic, consists in learning the control policy of 
a pendulum with limited torque using rein-
forcement learning (Figure 5). The dynamics 
of the pendulum are given by (Doya, 2000):

                  θ 
.
 = 

ml2  = –μ  + mgl sin θ + μ,     (6)

Figure 5. Pendulum swing up task.

where θ is the pendulum angle and θ˙ is 
the angular velocity. The physical parameters 
are mass m = 1, pendulum length l = 1, grav-
ity constant g = 9.81, time step Δt = 0.02 and 
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maximum torque Tmax = 5.0. The reward is giv-
en by the height of the tip of the pendulum, 
R(x) = cos(θ), and the discount factor is γ = 0.9. 
Each episode starts from an initial state x(0) = 
(θ(0), 0), where θ(0) is selected randomly in 
[-π, π]. An episode lasted for 20 seconds un-
less the pendulum is over-rotated (|θ| > 5π). 
These parameters are the same used in the 
continuous actor-critic (Doya, 2000). Due to 
the stochastic nature of RL, this experiment 
was repeated 50 times using different random 
seeds, and the average of the obtained results 
is shown in Figure 6a.

In Figure 6a the x axis represents the learn-
ing episode, and the y axis represents the time in 
which the pendulum stayed up (tup), i.e., when 
|θ| < π/4 (this is the same evaluation criteria 
used by Doya (2000)). The thick line in Figure 
6a represents the mean and the thin lines repre-
sent the 95% confidence interval of the obtained 
results. Comparing these results with those 
presented in Doya (2000), reproduced here 
in Figure 6b, we can notice that the proposed 
model has a superior performance compared to 
the Doya’s continuous actor-critic (specially in 
the first episodes), is more stable and does not 
require any previous configuration of the Gaus-
sian units. The average number of units added 
during learning is IGMN was 109.41.

Robot soccer task

The next experiment, originally proposed in 
Asada et al. (1996, 2003), consists in learning to 
shoot a ball into the goal of a simulated robot 
soccer environment. To perform this experiment 
a robot soccer simulator was developed using 

the Open Dynamics Engine (ODE - http://www.
ode.org) physics simulation library. A previous 
version of this simulator, described in Heinen 
and Osório (2006a, 2006b, 2007), was used to 
evolve gaits of legged robots. The simulated 
environment follows the rules of the RoboCup 
(http://www.robocup.org/) Soccer Middle Size 
League. The soccer field has 18 meters of length 
by 12 meters of width, the goal has 1 meter of 
height and 2 meters of width, the goal posts have 
12.5cm of diameter, and the ball has 70cm of cir-
cumference and 450 grams of weight. Moreover, 
walls of 1 meter of height were installed 1 meter 
apart from the field limits allowing the robot to 
perceive the environment using sonar sensors.

The simulated robot is similar to the Pioneer 
3-DX robot used in the previous experiments. 
It has a box shape of 44.5cm of length, 39.3cm 
of width and 23.7cm of height. Its weight is 9kg 
and it has two wheels with 19.53cm of diameter 
and differential kinematics. The time interval 
Δt used in the simulations is 0.05 seconds. The 
IGMN network used in this experiment has two 
cortical regions, NS and NV. The cortical region 
NS receives the values of the sonar readings, i.e., 
s = {s1, s2... s8}, and the cortical region NV receives 
the speeds applied at the robot wheels at time t, 
i.e., v = {v1, v2}. The reward function r(t) used in 
this experiment is:

r(t) = a(–drb(t)) + b(–dbg(t)) if dbg(t) > 0
r(t) = 10                                        if dbg(t) > 0 (7)
r(t) = – 10 if the ball exits the field

where drb(t) is the distance from the robot to 
the ball, and dbg(t) is the distance from the ball 

(a) Proposed RL algorithm (b) Continuous actor-critic

Figure 6. Results in the pendulum task.
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to the goal in the time t. The parameters a = 
1/4L and b = 2/L (where L is the field length) are 
used to modulate the influence of the terms in 
the reward function. If the ball hits the goal 
the episode ends with a reward r(t) = 10 for a 
second, and if the ball exits the field the epi-
sode ends with a reward r(t) = −10 for a second. 
Moreover, if the simulation time exceeds tmax = 
300 seconds the episode ends with no reward.

The learning process occurs in 1000 epi-
sodes. The robot starts an episode always in 
the same position, but the ball is randomly 
positioned (but in the range view of the sonar 
sensors). Thus, to obtain success in this task 
the robot needs: (i) to identify the ball using 
just sensory information; (ii) to move in the 
direction of the ball; and (iii) to “shoot” (or to 
lead) the ball into the goal without losing it. 
To evaluate the results two estimators were 
used: (i) the distance of the ball to the goal at 
the end of the episode (zero when the ball hits 
the goal) and (ii) the time required to the ball 
hit the goal (tmax in case of failing). Due to the 
stochastic nature of the task the whole experi-
ment was repeated 30 times using different 
random numbers. Figure 7 shows the mean of 
the results obtained in this experiment.

Observing the graph of Figure 7a it can be 
noticed that in the first episodes the robot was 
not able to reach the ball (the variations are 
due to the random initial ball position), but af-
ter the 100th episode the distances are strongly 
reduced. After the 750th episode the mean dis-
tances had stabilized near 0.6 meters, which 
indicates that the robot was able to lead the 
ball into the goal in great part of the episodes.

The graph of Figure 7b, on the other hand, 
shows that the simulation time was practi-
cally constant (near tmax) until the 80th epi-
sode, where it starts to reduce strongly until 

the 200th episode. Beyond this point the time 
reduces more slowly and stabilizes near 65 
seconds after the 600th episode. These results 
show that the robot was able to accomplish the 
task at the end of the training process, because 
60 seconds is the minimum time required 
to perform this task (i.e., to shoot a ball into 
the goal) using the simulation conditions de-
scribed above.

Figure 8 shows an example of robot trajec-
tory during the task. The number of proba-
bilistic neurons added by IGMN during the 
learning process was 138.32 in average, and 
the time required to execute each experiment 
(i.e., to perform 1000 episodes) was approxi-
mately 2.5 hours.

Fe ature-based mapping

Map building is a fundamental problem 
in mobile robotics, in which a robot must 
memorize the perceived objects and features, 
merging corresponding objects in consecu-
tive scans of the local environment (Thrun, 
2002). There are several approaches to solve 
the map building problem. Among those are 
occupancy grid and feature-based maps. The 
occupancy grid maps are generated from 
stochastic estimates of the occupancy state 
of an object in a given grid cell (Thrun et al., 
2006). They are relatively easy to construct 
and maintain, but in large environments 
the discretization errors, storage space and 
time requirements become matters of con-
cern. Feature-based maps, on the other hand, 
model the environment by a set of geomet-
ric primitives such as lines, points and arcs 
(Meyer and Filliat, 2003). Segment-based 
maps, which are the most common type of 
feature-based maps, have been advocated as 

(a) Distance to the goal in meters (b) Simulation time in seconds

Figure 7. Robot soccer experiment.
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a way to reduce the dimensions of the data 
structures storing the representation of the 
environment (Amigoni et al., 2006a). Its main 
advantage over occupancy grid maps is that 
line segments can be represented with few 
variables, thus requiring less storage space. 
Moreover, line segments are also easy to ex-
tract automatically from range data.

However, segment-based maps are not 
able to give closed and connected regions like 
occupancy grid maps because some objects 
do not provide line segments. Moreover, the 
number of extracted line segments is very high 
if the environment is irregular (not composed 
only by straight walls) and/or the range data is 
quite noisy. Another disadvantage of segment-
based maps is the absence of probabilistic 
information in the generated map (although 
some researchers (Gasós and Martín, 1997; Ip 
et al., 2002) have used fuzzy sets to deal with 
uncertainty in the mapping process). In fact, 
according to Thrun (2006), probabilistic ap-
proaches are typically more robust in face of 
sensor limitations, sensor noise, environment 
dynamics, and so on. Other localization and 
mapping techniques, such as particle filters 
and potential fields, generally use grid maps 
to represent the environment, and therefore 
have the same restrictions pointed out above.

This section presents a new feature-based 
mapping algorithm, proposed in (Heinen and 
Engel, 2011; Heinen and Engel, 2010e), which 
uses the IGMN probabilistic units to represent 
the features perceived in the environment. This 
kind of representation, which is inherently 
probabilistic, is more effective than segment-
based maps because it has an arbitrary accu-
racy (it does not require discretization) and 
can even model objects that do not provide line 

segments. Moreover, the proposed mapping al-
gorithm does not require an exclusive kind of 
sensor (it can be used either with laser scanners 
or sonar sensors), requires low storage space 
and is very fast, which allows it to be used in 
real time. The remaining of this section is or-
ganized as follows. Subsection Related work de-
scribes some previous feature-based mapping 
techniques. Subsection Mapping using IGMN 
describes how IGMN can be used to create 
feature-based maps. Finally, Subsection Experi-
ments describes some experiments performed 
to evaluate the proposed mapping algorithm 
using real sonar and simulated laser range data.

Related work

In the last decade several feature-based 
mapping algorithms have been proposed to 
solve the map building problem. In Zhang and 
Ghosh (2000) a segment-based mapping algo-
rithm is proposed that describes a line seg-
ment using the center of gravity of its points 
and the direction θ of its supporting line. This 
algorithm groups laser points in clusters, and 
for each cluster, a line segment is generated. In 
Lee et al. (2005) a feature based mapping algo-
rithm is presented which uses an association 
model to extract lines, points and arc features 
from sparse sonar data. In Puente et al. (2009) 
a mapping algorithm is presented which uses 
a segmentation algorithm derived from com-
puter vision techniques to extract geometri-
cal features from laser range data. In Latecki 
et al. (2004) a mapping algorithm is proposed 
which represents the environment by polygo-
nal curves (polylines).

In (Amigoni et al., 2006a, 2006b) a method 
derived from the Lu and Milos’ algorithm 

Figure 8. Robot trajectory during the task.
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(Lu and Milos, 1998) is presented for building 
segment-based maps that contain a small 
number of line segments. In Lu ad Milios (1998) 
an algorithm is proposed to build a global 
geometric map by integrating scans collected 
by laser range scanners. This method, which 
considers scans as collections of line segments, 
works without any knowledge about the robot 
pose. In Luo et al. (2008) an indoor localization 
method based on segment-based maps is pro-
posed. It works in four steps: clustering scan 
data; feature extraction from laser data; line-
based matching; and pose prediction. But this 
method assumes that the environment map al-
ready exists, i.e., it neither creates nor updates 
the map.

In Lorenzo et al. (2004) a method is proposed 
to solve the SLAM (Simultaneous Localization 
and Map Building) problem based on seg-
ments extracted from local occupancy maps, 
in which line segments are categorized as new 
obstacle boundaries of a simultaneously built 
global segment-based map or as prolongations 
of previously extracted boundaries. In Delius 
and Bugard (2010) a point-based represen-
tation is described, in which the data points 
gathered by the robot are directly used as a 
non-parametric representation. To reduce the 
large memory requirements necessary to store 
all data points, an off-line algorithm based on 
the fuzzy k-means is used to select the maxi-
mum-likelihood subsets of data points.

As described above, the main limitation of 
all these feature-based mapping techniques is 
the absence of probabilistic information in the 
generated map. To avoid this limitation, Gasós 

and Martín (1997), Gasós and Rosseti (1999) 
use fuzzy-segments to represent uncertainty 
in the feature positions. This model extracts 
segments from points provided by sonar sen-
sors, which are modelled on the map using 
fuzzy-sets. In the model proposed by Ip et al. 
(2002), on the other hand, an adaptive fuzzy 
clustering algorithm is used to extract and 
classify line segments in order to build a com-
plete map for an unknown environment.

Although these mapping techniques are 
able to create good representations in simple 
environments composed by straight walls, 
most of them are not able to build the map 
in real-time while the robot navigates in the 
environment (i.e., they are off-line solutions). 
The mapping algorithm proposed in this sub-
section, on the other hand, is able to build 
environment representations in real time 
and incrementally. Moreover, it is inherently 
probabilistic and does not assume a specific 
environment structure. The next subsection 
describes how IGMN can be used in a feature-
based mapping algorithm.

Mapping using IGMN

This subsection describes a geometric-
based mapping algorithm which uses the 
IGMN units (also called mixture model com-
ponents) to represent the features (objects, 
walls, etc) of the environment. Figure 9 shows 
the general architecture of the mapping algo-
rithm. It consists mainly of two IGMN’s, the 
local model, which represents the local per-
ception of the robot, and the global model, 

Figure 9. General mapping architecture.
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which represents the global environment map. 
Each IGMN has two cortical regions, NA and 
NB. The cortical region NA tackles the values of 
the sensor readings and the cortical region NB 
receives the odometric information provided 
by the Pioneer simulator.

Initially both models are empty. When a 
sensor reading arrives (which can be a laser 
scan or a sonar reading) it is transformed into 
object locations on a global coordinate system 
based on the robot position estimated by the 
dead reckoning system. These object locations 
are grouped in clusters using the IGMN algo-
rithm, thus composing the local model. When 
a specified number N of sensor readings ar-
rives (e.g., 10 laser scans or 100 sonar read-
ings), the local model is matched against the 
global model. If the global model is still empty, 
all local units are added to it and deleted from 
the local model. Otherwise the robot pose is 
adjusted to minimize the differences between 
the local and global models using a compo-
nent matching process described in Heinen 
and Engel (2011). Both IGMN models are then 
merged into the global model and the local 
model is emptied. When a new sensor reading 
arrives, all these steps are repeated, and so the 
global model is updated at each N readings.

All this process occurs in real time at nor-
mal sensor arriving speeds (e.g., one laser 

scan at each 100 milliseconds) even with more 
than 500 Gaussian units in the IGMN models. 
In fact, the prototype was able to perform all 
these operations (including the matching and 
merging processes) in less than 30 millisec-
onds on the same typical computer described 
before. In relation to memory requirements, 
the proposed mapping algorithm is very par-
simonious, requiring just eight floating point 
numbers to store each two-dimensional Gaus-
sian distribution (D2+D+2 floating-point varia-
bles, where D = 2 is the dimension of the map). 
More details about the proposed feature-based 
algorithm can be found at Heinen and Engel 
(2011, 2010e).

Experiments

This subsection describes some experi-
ments performed to evaluate the proposed 
mapping algorithm using two kinds of sensory 
information: (i) data provided by a simulated 
laser scanner; and (ii) data provided by sonar 
sensors. The robot used in these experiments 
is a Pioneer 3-DX, shown in Figure 2. This ro-
bot has a Sick LMS-200 laser scanner installed 
on it, which in ideal conditions is capable of 
measuring out to 80m over a 180° arc. Figure 10 
shows the real environment used in the simu-
lation. It is composed by two long corridors of 

(a) Long corridor (b) Short corridor

(c) Schematic map of the environment

Figure 10. Simulated environment.
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2.3x30 meters linked by two short corridors of 
2.3x10 meters, as shown in the schematic map 
presented in Figure 10c. This environment has 
several irregularities (e.g. doors, saliencies and 
printers) which difficult the mapping process.

Experiments using laser data
This subsection describes two experiments 

performed using sensor data provided by a 
simulated laser scanner that is equivalent to 
the Sick LMS-200 installed on the real Pioneer 
3-DX robot. In these experiments, the robot 
was manually controlled to perform one loop 
in the simulated environment shown in Figure 
10c. A complete laser scan is received at each 
100 milliseconds, and the mapping process is 
performed at each second (i.e., 10 scans). The 
first experiment was conducted using δ = 0.01 
and εmax = 0.1, and this configuration produced 
9 large clusters, as can be seen in Figure 11.

In this figure, each cluster is represented 
by an ellipse whose width is equivalent to a 
Mahalanobis distance of two. The occupancy 

probabilities of this map are graphically shown 
in Figure 12, where darker regions represent 
higher occupancy probabilities and lighter 
regions correspond to probabilities close to 0. 
It is important to highlight that the proposed 
mapping algorithm does not have any random 
initialization and/or decision, and thus the ob-
tained results are always identical for the same 
dataset and configuration parameters.

The next experiment was performed using 
the same conditions described above, but using 
εmax = 0.01, which makes the system more sensi-
ble to small variations in the laser data. The re-
sults obtained in this experiment are shown in 
Figures 13 and 14. It can be noticed from Figure 
13 that much more clusters were generated in 
this experiment (76 Gaussian components were 
generated). Nevertheless, these clusters fit very 
well the environment features, existing almost 
one cluster for each feature (doors entrances, 
saliencies in the walls, etc.). Moreover, each 
wall is modeled by a thin, long cluster which 
closely represents the center of the wall.

Figure 11. Results obtained using laser data.

Figure 12. Occupancy probabilities.

Figure 13. Results obtained using laser data.



Journal of Applied Computing Research, vol. 1, n. 1, p. 2-19, Jan/Jun 201116

Heinen and Engel | An incremental connectionist approach for concept formation, reinforcement learning and robotics

These experiments show that the proposed 
mapping algorithm is able to create useful 
representations of the environment, and these 
representations can be coarse (Figure 11) or 
fine (Figure 13) depending on the εmax configu-
ration value. Although these experiments were 
performed using high quality simulated laser 
range data, the proposed mapping algorithm 
is not restricted to this kind of sensory data. In 
the next subsection we describe an experiment 
performed using this same environment, but 
with data provided by real sonars, which are 
less accurate and noisier than laser scanners.

Experiments using real sonar data

In these experiments, the proposed map-
ping algorithm is evaluated using data provid-
ed by the sonar sensor array of the real Pioneer 
3-DX robot. The time interval of each scan is 
100 milliseconds, and the local model is gen-
erated using 100 complete scans (i.e., at each 

10 seconds). Figure 15 shows the global model 
generated after one loop in the environment 
and Figure 16 illustrates the occupancy prob-
abilities of this map, where darker regions rep-
resent higher probabilities. The configuration 
parameters used in this experiment are the 
same of the previous one (i.e., εmax = 0.01).

We can notice that even with many noise 
sources present in the environment, the pro-
posed mapping algorithm was able to create 
a reasonable map of the environment using 
this very noisy sensory data. The results ob-
tained in Figure 15 show that the proposed 
mapping algorithm does not require just laser 
scanner sensors, but of course the quality of 
the maps is superior when high quality sen-
sor data is used.

Conclusi on

This paper has shown the use of IGMN, pro-
posed at Heinen (2011) and Heinen and Engel 

Figure 14. Occupancy probabilities.

Figure 15. Results obtained using sonars.

Figure 16. Occupancy probabilities.
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(2010c) in many applications such as reinforce-
ment learning, robotic mapping and concept 
formation, thus demonstrating that IGMN is a 
very powerful machine learning tool that can 
be applied in many state-of-the-art problems of 
computer science, robotic and control research 
areas. The future perspectives include expand-
ing the feature-based mapping algorithm, pre-
sented in Section 5, into a complete SLAM solu-
tion, thus controlling the action of the mobile 
robot as it navigates through the environment.
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