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Introduction

Rationality is often studied as if it were independent from the limitations of the cognitive 
structures that implement it. This is an example of this widespread attitude:

It can be epistemically rational for a person S to believe even that which, given his circum-
stances or given his limitations as a believer, he cannot believe. It also can be epistemically rational 
for S to believe that which, given his circumstances, or given his limitations as a believer, he cannot 
help but believe (Foley, 1987, p. 13).

An example of such limitations is the (limited) amount of (cognitive) resources available for 
reasoning (� ecially, memory and time)2. I agree that rationality is independent from the posses-
sion of � ecific amounts of cognitive resources. For example, I did not become less rational because 
my memory has worsened in the last years nor would I become more rational if I took a think-
ing-faster pill3. However, (human) epistemology is e� ecially concerned with human rationality 
and it seems to be an essential feature of human rationality that humans have finite amounts of 
cognitive resources. For this reason, the study of rationality should acknowledge the fact that 
humans are finite reasoners4.

That humans are finite reasoners is not often acknowledged in the literature because episte-
mologists are often concerned, not with reasoning, but only with the final product of reasoning: 
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(sets of) beliefs. The most widespread formal model of a ra-
tional reasoner is Hintikka’s model, based on modal epistemic 
logic (Hintikka, 1962). All reasoners described in Hintikka’s 
model are logically omniscient in the sense of believing all 
the logical consequences of their beliefs (see Jago, 2006, for 
other notions of logical omniscience)5. Logically omniscient 
reasoners believe all logical tautologies (supposedly, tautolo-
gies are logical consequences of any set of beliefs). But logical 
omniscience is impossible for finite reasoners (e.g. humans), 
among other things, because there are infinitely many tautol-
ogies. Supposing that the adoption of each (explicit) belief de-
mands some space in memory, finite reasoners cannot believe 
infinitely many tautologies because they have only finite space 
in memory. Supposing that the adoption of each (explicit) 
belief demands the execution of inferences, finite reasoners 
cannot believe infinitely many tautologies because they are 
able to execute only finitely many inferences in a finite time 
interval. This sort of inadequacy is known as the problem of 
logical omniscience (see Stalnaker, 1991; Duc, 1995; Jago, 2013; 
Artemov and Kuznets, 2014).

The most common strategy for dealing with the prob-
lem of logical omniscience is to interpret the models using a 
notion of beliefs different from explicit beliefs (e.g. implicit 
beliefs in Hintikka, 1962, p. 38). Consider a model of a rea-
soner that provides a clear definition for a notion of beliefs 
that may be used in dealing with the problem of logical om-
niscience (see Dantas, 2016, Ch. 1). In the model, a reasoner 
is composed of a language (ℒ), a knowledge base (KB), and a 
pattern of inference (π), where KB is a set of sentences in ℒ 
that models the explicit beliefs of the reasoner and π: 2ℒ × ℤ+ 
→ 2ℒ is a function for updating KB that models the pattern of 
inference of the reasoner. A fact about the pattern of infer-
ence of a reasoner is that the reasoner can execute different 
inferences from the same premises. In the model, this fact is 
expressed using a function π that has a numeric parameter 
(integer) in addition to the parameter for KB. In this context, 
π(KB, 1) models one inference from KB, π(KB, 2) models 
another inference from KB, etc. Then function π determines 
a reasoning sequence KB0, KB

1
,…, KBi ,…, where KB0

 is the 
initial set of explicit beliefs and KBi+1 =π(KBi , i+1). Supposing 
that the numeric parameter models an ordering of intention, 
a reasoning sequence models how the reasoner would reason 
if it could reason indefinitely. The set of stable beliefs, the be-

liefs that the reasoner would hold in the limit of a reasoning 
sequence, is KBω = ⋃i ⋂j≥i KBj. The problem of logical om-
niscience could be avoided if Hintikka’s model, for example, 
were interpreted in terms of stable beliefs. The model would 
describe maximum rationality, which a finite reasoner can 
only approach in the limit of a reasoning sequence6.

This strategy has important consequences for epistemol-
ogy. If a finite reasoner can only approach maximum ratio-
nality in the limit of a reasoning sequence, then the efficiency 
of patterns of inference is epistemically (and not only prag-
matically) relevant. In the first section (“The argument”), I 
present an argument to this conclusion. In the second section 
(“Discussion”), I discuss the consequences of this conclusion. 
The main consequence is the vindication of the principle ‘no 
rationality through brute-force’7. Rationality would be relat-
ed to efficiency: the good use of (scarce) cognitive resources.

The argument

The efficiency of a pattern of inference may be mea-
sured in different ways, such as: (m1) the relative number 
of (explicit) beliefs at each stage of a reasoning sequence; 
(m2) the relative number of inferential steps executed un-
til each stage of a reasoning sequence; (m3) the relative 
number, at each stage of a reasoning sequence, of (explicit) 
beliefs that will be retracted at later stages of the sequence 
(Kelly, 1988).

Measure m1 is related to memory, m2 is related to time, 
and m3 is related to both. The following argument is stated 
in terms of m2, but similar considerations might be done in 
terms of m1 or m3 (see Kelly, 1988, for an argument in terms 
of m3). An inference is a sequence of inferential steps, where 
an inferential step is the execution of an inference rule for a 
group of sentences. For example, concluding that q from p → 
q and p using modus ponens is an inferential step. Supposing 
that each inferential step demands time and that a finite rea-
soner has an upper bound for time (e.g. life span), executing 
relatively more direct inferences allows a reasoner to reach 
farther in a reasoning sequence because otherwise it would 
reach its upper bound at some earlier stage of the sequence8.

Absolute efficiency (e.g. the absolute number of infer-
ential steps) is usually said to be relative to implementations. 

5 In Hintikka’s model, a reasoner is described as a set of possible worlds and an accessibility relation. The reasoner believes those sen-
tences that are true in all accessible possible worlds. Possible worlds are maximally consistent (see Menzel, 2016). Then if a group of 
sentences are all true in all accessible possible worlds so are all their logical consequences. Then the reasoner believes all the logical 
consequences of its beliefs and is logically omniscient.
6 I use ‘maximum rationality’ in the sense of the highest possible level of rationality for finite reasoners.
7 In cryptography, a brute-force attack consists of an attacker trying many passwords with the hope of eventually guessing correctly. Ac-
cordingly, if there exists a procedure for checking guesses, a reasoner that is able to execute inferences instantaneously (unlimited time) 
may solve any problem (instantaneously) simply by generating and checking random guesses successively. This brute-force behavior 
does not model rationality for finite reasoners.
8 For example, concluding that q from p→q and p using modus ponens (one inferential step) is a more direct inference than concluding 
q from a reduction to absurdity of the supposition that ¬q (four inferential steps). The number of inferential steps is relative to the un-
derlying logic, but the notion of more direct inferences is clear enough.
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For example, the number of inferential steps is relative to the 
underlying logic. I will measure efficiency by using asymptot-
ic analysis and, consequently, by comparing classes of com-
putational complexity (those classes are usually said to be 
invariant over implementations – see the appendix about the 
computational complexity of algorithms).

This is the argument (in the remaining of this section, I 
will defend each of its premises):

•  p1: If a finite reasoner with a polynomial pattern of 
inference had increasingly more cognitive resources, it 
would tend to reach infinitely farther in a reasoning 
sequence (in comparison to if it had an exponential 
pattern of inference).

•  p2: If p1, then, under certain conditions, having a poly-
nomial pattern of inference enables a finite reasoner to 
reach closer to maximum rationality (in comparison 
to having an exponential pattern of inference).

•  p3: If p1 and p2, then the computational complexity of 
patterns of inference is relevant to epistemology.

•  ∴ : The computational complexity of patterns of infer-
ence is relevant to epistemology. 

P1

The claim in p1 is that if a finite reasoner with a poly-
nomial pattern of inference had increasingly more cognitive 
resources, it would tend to reach infinitely farther in a reason-
ing sequence (in comparison to if it had an exponential pat-
tern of inference)9. Let r(i) be the ‘resource function’ of a rea-
soner, a function that measures the amount of some cognitive 
resource (e.g. time) necessary for the reasoner to reach the ith 
stage of a reasoning sequence (r(i)≥0 because the amount of 
cognitive resources necessary for reasoning is always nonneg-
ative). In the following, I use poln(x) as a predicate for denot-
ing polynomial functions (‘f(x) is poln(x)’ means that f(x) is in 
the extension of poln(x)). The same holds for exp(x) (expo-
nential) and log(x) (logarithmic, see the appendix about the 
computational complexities of algorithms for those classes)10. 
Consider theorem t1 (t1 and t2 are classical results in analysis, 
see Conrad, 2016, for related proofs):

lim  
poln(i)
exp(i)  =∞

i→∞  (t1)

Proof of t1: I will show that lim  
xb
ax

 =∞
x→∞ , where a>1 and b≥0 

are constants. If the proof holds for ⌈b⌉, it holds for b. Then I 
will assume that b is an integer and use induction on b. The-
orem t1 is true for b=0 because, in this case, ax→∞ (a>1) and  
xb is a constant. Suppose that t1 fails for some b and choose 

the minimal b for which t1 fails. Since b≥1, lim xb = ∞
x→∞

. Since 
t1 holds for b-1, it follows that lim  

xb-1
ax

 =∞
x→∞

. Let f(x) = ax and g(x) 
= xb. L’Hopital’s entails that lim  

g(x)
f(x) =

x→∞
 lim  

g’(x)
f ’(x) =

x→∞
 lim  

bxb-1
ln(a)ax

 = 
x→∞

 b
ln(a) lim  

xb-1
ax

 =
x→∞

 

b
ln(a)

∞ =∞. ∎

Theorem t1 may be interpreted as stating that advanc-
ing in the reasoning sequence tends to demand infinitely more 
cognitive resources if the reasoner has an exponential pattern 
of inference (in comparison to an exponential pattern of infer-
ence). Now, consider a finite reasoner with a resource function 
r(i) and a fixed upper bound u≥0 for some cognitive resource 
(e.g. time). Then the reasoner can reach the ith stage of a rea-
soning sequence iff r(i)≤u. Consider t2, where max(i∣r(i)≤u) 
denotes the maximum i such that r(i)≤u (the farthest stage in 
a reasoning sequence that the reasoner can reach):

lim  
max(i∣exp(i)≤u)
max(i∣poln(i)≤u) =∞

u→∞
 (t2)

Proof of t2: It is easy to see that max(i∣poln(i)≤u) is 
at most poln(u) and max(i∣exp(i)≤u) is log(u). Then I will 
show that lim 

log (u)
poln(u)  =∞

u→∞
. In other words, that lim 

logc (x)b
xa

 =∞
x→∞ , where 

a≥0, b≥0, c>0 are constants. Since the ratio ln (x)b
logc (x)b

 is a constant 
log

c
(e)b>0, I will restrict myself to the natural logarithm ln. 

By the same reasoning used in the proof of t1, I will assume 
that b is an integer and use induction on b. By the same rea-
soning used in the proof of t1, t2 is true for b=0. Suppose 
that t2 fails for some b and choose the minimal b for which 
it fails. Since b≥1, lim ln (x)b =∞

x→∞
. Since t2 holds for b-1, lim 

ln (x)b-1
xa

 =∞
x→∞ . 

Let f(x)=xa and g(x)=ln(x)b. L’Hopital’s entails that lim  
g(x)
f(x) =

x→∞
 

lim  
g’(x)
f ’(x) =

x→∞
 lim 

bxb-11/x
axa-1

 = 
x→∞

 
b
a lim 

ln (x)b-1
xa

 =
x→∞

 
b
a  ∞ =∞. 

Theorem t2 is more difficult to interpret. For any fi-
nite reasoner, we may conceive a series of otherwise identi-
cal (hence, similar) finite reasoners with increasingly larger 
(but still finite) upper bounds for some cognitive resource 
(e.g. time). Then t2 may be interpreted as stating that, as 
we consider two series of similar finite reasoners with in-
creasingly larger upper bounds us, those with polynomial 
patterns of inference tend to reach infinitely farther in the 
reasoning sequence (in comparison to those with exponen-
tial patterns of inference). But, if t2 may be interpreted in 
terms of series of (merely possible) similar finite reasoners, 
it may also be interpreted in terms of series of counterfac-
tual versions of a finite reasoner. Then theorem t2 may be 
interpreted as stating that if a finite reasoner with a poly-
nomial pattern of inference had increasingly more cognitive 
resources, it would tend to reach infinitely farther in a rea-
soning sequence (in comparison to if it had an exponential 
pattern of inference), which is p1.

9 Solving 2-satisfiability using truth-tables is an example of exponential pattern of inference. Using Krom’s algorithm for the same end is 
an example of polynomial pattern of inference (see Krom, 1967). The equations in this section may be interpreted in terms of the task 
‘solve 2-satisfiability for each suitable sentence in the language’.
10 Then ‘polynomial pattern of inference’ denotes a pattern of inference with resource function of the form poln(i) and ‘exponential 
pattern of inference’ denotes a pattern of inference with resource function of the form exp(i).
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P2

The claim in p2 is that if p1, then, under certain con-
ditions, having a polynomial pattern of inference enables a 
finite reasoner to reach closer to maximum rationality (in 
comparison to having an exponential pattern of inference). 
Maximum rationality can (only) be approached in the lim-
it of the reasoning sequence. Then if a polynomial reasoner 
tending to reach further in the sequence (in comparison to 
an exponential reasoner) entails that it tends to reach closer 
to the limit of the sequence, then it may be said that p1 entails 
that, under certain conditions, a polynomial reasoner tends 
to reach closer to maximum rationality (in comparison to an 
exponential reasoner)11. Reaching closer to the limit of an in-
finite sequence does not make sense for any finite difference of 
positions in the sequence, but p1 states that the difference of 
positions between a polynomial and an exponential reasoner 
tends to infinity. In this case, I think that it may be said that 
p1 entails that, under certain conditions, a polynomial rea-
soner reaches closer to maximum rationality (in comparison 
to an exponential reasoner), where the conditions in question 
are ‘at the limit of a reasoning sequence if it had increasingly 
more cognitive resources’.

Premise p1 also suggests that having a polynomial pat-
tern of inference is the feature that enables a polynomial rea-
soner to reach farther in the sequence (closer to maximum 
rationality) because having a polynomial pattern of inference 
is the only difference between the polynomial reasoner and 
its exponential counterpart. In this case, it may be said that 
p1 entails that, under certain conditions, having a polynomi-
al pattern of inference is what enables a polynomial reasoner 
to reach closer to maximum rationality (in comparison to an 
exponential reasoner). Then it may be said that if p1, then, 
under certain conditions, having a polynomial pattern of in-
ference enables a finite reasoner to reach closer to maximum 
rationality (in comparison to having an exponential pattern 
of inference), which is p2.

P3

The claim in p3 is that if p1 and p2, then the computa-
tional complexity of patterns of inference is relevant to episte-
mology. If p1 and p2, then (by modus ponens) it follows that, 
under certain conditions, having a polynomial pattern of in-
ference enables a finite reasoner to reach closer to maximum 
rationality (in comparison to having an exponential pattern 
of inference). I regard as a general principle of (meta-)episte-
mology that if, under certain conditions, some feature enables 
a reasoner to reach closer to maximum rationality and those 
conditions are relevant to epistemology, then whether a rea-
soner  possesses that feature is relevant to epistemology.

Performing more reasoning (and having the necessary 
cognitive resources for doing so) usually enables a reasoner 
to be in a better epistemic position. Then the conditions ‘at 
the limit of a reasoning sequence if it had increasingly more 
cognitive resources’ are relevant to epistemology. Then it 
follows from the general principle that whether a pattern of 
inference is polynomial or exponential (i.e. its computational 
complexity) is relevant to epistemology. If p1 and p2, then the 
computational complexity of patterns of inference is relevant 
to epistemology, what is p3.

Discussion

If p1, p2, and p3 are all true, then (by two modus pon-
ens) it follows that (∴) the computational complexity of pat-
terns of inference is relevant to epistemology. The question 
now is how to interpret this conclusion. What would be the 
role of computational complexity in epistemology? I think 
that the preceding discussion suggests an epistemic norm of 
the form ‘a rational reasoner should have a polynomial pat-
tern of inference (if possible)’. The clause ‘if possible’ is in place 
because (most probably, if PN ≠ P) it is not possible for a finite 
reasoner to deal with some problems (e.g. NP-complete prob-
lems) using a polynomial pattern of inference (see the appen-
dix about the computational complexity of problems).

In the literature on computer science, exponential pat-
terns of inference are often correlated with brute-force search 
whereas polynomial patterns of inference are correlated with 
deep understanding:

The motivation for accepting this require-
ment is that exponential algorithms typically 
arise when we solve problems by exhaustive-
ly searching through a space of solutions, 
what is often called a brute-force search. 
Sometimes brute-force search may be avoid-
ed through a deeper understanding of a 
problem, which may reveal polynomial algo-
rithms of greater utility (Sipser, 2012, p. 285).

But, if this correlation is correct, to require rational rea-
soners to have polynomial patterns of inference (if possible) is 
to require rational reasoners to approach maximum rational-
ity through deep understanding and not through brute-force 
(if possible). This seems to be a vindication of the principle ‘no 
rationality through brute-force’.

Appendix

For more information about theory of computational 
complexity, see Sipser (2012, p. 273).

11 ‘Polynomial reasoner’ denotes a reasoner with a polynomial pattern of inference and ‘exponential reasoner’ denotes a reasoner with 
an exponential pattern of inference.



No rationality through brute-force

199Filosofi a Unisinos – Unisinos Journal of Philosophy – 18(3): 195-200, sep/dec 2017

Complexity of algorithms

The analysis of the complexity of algorithms is a part of 
computational complexity theory. The complexity of an al-
gorithm is often understood as the rate in which the running 
time (time complexity) or the memory requirements (space 
complexity) of the algorithm grows in relation to the size 
of the input. The absolute complexity of an algorithm usu-
ally requires assumptions about implementation. In order 
to abstract from these assumptions, an asymptotic analysis 
is used.

In an asymptotic analysis, the complexity of the algo-
rithm is determined for arbitrarily large inputs. The asymp-
totic analysis of an algorithm is often done under some ex-
tra abstra� ions. The first step is to abstract over the input 
of the algorithm, using some parameter to chara� erize the 
size of the input. The second step is to use some parameters 
to chara� erize the running time or memory requirements of 
the algorithm. In addition, the complexity of an algorithm is 
usually measured in relation to its worst-case scenario (the 
most demanding case for the algorithm).

Nevertheless, the exact complexity of an algorithm is of-
ten a complex expression. In most cases, the big-O notation 
is used for simplification (e.g. f(n) = O(g(n)), where n is the 
size of input). In big-O notation, only the highest order term 
of the expression of the complexity of the algorithm is con-
sidered and both the coefficient of that term and any lower 
order terms are disregarded. The idea is that, when the input 
grows arbitrarily, the highest order term dominates the other 
terms. For example, the function f(n) = 7n3+ 5n2+ 10n + 34 
has four terms and the highest order term is 7n3. Disregarding 
the coefficient 7, we say that f(n)=O(n3).

Definition 1 (Big-O notation (O(g(n)))). Let f and g be 
functions f, g: ℕ→ℝ+. Then f(n)=O(g(n)) iff there exist posi-
tive integers c and n0 such that for every integer n≥n0, f(n)≤c-
g(n) (Sipser, 2012, p. 227).

In this framework, algorithms are often classified un-
der two categories: polynomial and exponential complexity. 
A polynomial algorithm is an algorithm whose complexity 
may be expressed using a function of the kind O(nc), where c 
is a constant. A � ecies of polynomial algorithm are th e log-
arithmic algorithms, which may be expressed using a func-
tion of the kind O(logc(n)). An exponential algorithm is an 
algorithm whose complexity must be expressed using a func-
tion of the kind O((2n)c), where c is a constant greater than 
0. While the actual complexity of an algorithm depends on 
low-level encoding details, where an algorithm falls on the 
polynomial/exponential dichotomy is independent of almost 
all such choices (for reasonable models of computation).

Complexity of problems

In computational complexity theory, a complexity class 
is a class of problems of related resource-based computational 
complexity. The most important complexity classes are P, NP, 
and NP-complete. The class P (polynomial time) is the class 
of decision problems12 that are solvable by a deterministic 
Turing machine in polynomial time. Meanwhile, NP (nonde-
terministic polynomial-time) is the class of decision problems 
for which a solution may be checked by a deterministic Tur-
ing machine in polynomial time, even if the solution cannot 
be found in polynomial time13.

Since all problems solvable in polynomial time may be 
checked in polynomial time, P ⊆ NP. Whether P = NP is an 
open question14. Of � ecial interest for the solution of this 
question is the class NP-complete. NP-complete is the class 
of decision problems such that all decision problems in NP 
are reducible to these problems in polynomial time15. In this 
context, if a problem in NP-complete is solvable in polyno-
mial time, then all problems in NP are solvable in polynomial 
time and P=NP. An example of NP-complete problem is the 
satisfiability problem.
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