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Abstract 

The Simulation-Based Optimization (SBO) method differs from conventional design methodology, as its 
main focus is the building’s performance, without failing to take into account the traditional aspects of 

design. When associated with parameterization, it can be explored to create solutions appropriated for 
specific shape and performance criteria. This method is achievable through the interoperability between 

digital performance and modeling software, such as Grasshopper, a parametric modeling plug-in for 
Rhinoceros, and HoneyBee, a plug-in for Grasshopper that connects the parameterized model to Energy 

Plus. Octopus is a plug-in connected to Grasshopper that allows trade-offs between variables to be 
combined by genetic algorithms and indicates modifications to the model based on the data provided. This 

study aims to analyze the thermal performance optimization process of an autonomous housing unit 
through the SBO method. Shape variation parameters were evaluated in function of thermal performance 
criteria depending on two objectives: reducing the cooling and heating degree-hours. The results enabled 

the shape analysis of the models and the identification of predominant characteristics of best and worst 
solutions for winter and summer conditions, as well as a study of simulation controlling termination criteria. 

Keywords: Parameterization, Thermal Performance,  Simulation-based Optimization; 
Grasshopper; Octopus 

Resumo 

O método de Otimização Baseada em Simulação (OBS) difere-se da metodologia convencional de 
projeto, tendo seu principal foco no desempenho ambiental de edificações, porém sem desconsiderar os 
demais aspectos tradicionais do projeto. Quando associado à parametrização, pode ser explorado para 

criar soluções adequadas aos critérios formais e desempenho pré-determinados. Este método é possível 
através da interoperabilidade entre programas de desempenho e modelagem digital, como Grasshopper, 
um plug-in de modelagem paramétrica para o Rhinoceros, e o HoneyBee, plug-in para Grasshopper que 

conecta o modelo parametrizado ao Energy Plus. O Octopus é o motor de otimização conectado ao 
Grasshopper que toma decisões das variáveis a combinar por algoritmos genéticos, e propõe alterações 

no modelo com base nos dados fornecidos. Este estudo objetiva analisar o processo de otimização do 
desempenho térmico de uma unidade habitacional pelo método de OBS. Parâmetros de variação formal 

da unidade foram analisados em função de critérios de desempenho térmico, condicionados a dois 
objetivos: reduzir os graus-hora de resfriamento e graus-hora de aquecimento. Os resultados permitiram 

análises formais dos modelos e identificação das características predominantes das melhores e piores 
soluções para as condições de inverno e verão, além de um estudo do critério de parada da simulação. 

Palavras-chave: Parametrização, Desempenho térmico, Simulação baseada em Otimização, 
Grasshopper, Octopus 
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INTRODUCTION 

Since the 1980s, with the development of computational technology and the 

growing demand for energy-efficient buildings, there has been great progress 

in the design process. From this context, a method known as Simulation-

Based Optimization (SBO) has emerged, which differs from conventional 

design methodology as its main focus is on buildings’ performance, without 

failing to consider other traditional design aspects, such as composition and 

spatiality (1). This type of architectural project design is an effective approach 

to efficient designs, and when associated with parameterization, can be used 

to create appropriated solutions to predetermined shape and performance 

criteria. 

Parameterization and digital manufacturing have aided architects and 

engineers in developing a new way of constructing, meaning that architectural 

design does not limit the volume and spatial arrangements to subjective 

relationships, limited to the architect's repertoire. This type of modeling has 

enabled the development of more organic and complex forms based on the 

creation of rules, restrictions, and relations between the elements. To create 

this network of connections, the geometry is composed of parameters and 

hierarchies, which facilitate manipulation according to the need of each user 

(2). 

Based on the combination of pre-determined parameters, parametric 

modeling provides several design solutions that are subsequently selected 

and evaluated according to the predefined judgment criteria for meeting one 

or more objectives (2). Thus, performance-based design has become an 

effective method to aid the design of energy-efficient buildings, allowing the 

parameterization of the shape linked to simulation to intervene in the design 

from the very first stage of its development (3).  

Decisions taken early on in the design are those that most impact the final 

costs and energy performance of the building (4). Thus, Oxman (5) introduces 

the concept of "performative generative design", in which performance 

becomes the determining element in the creation or modification of the 

architectural form. Rather than creating the architectural point of view as a 

starting point for the design, "performative design" is based on the ability to 

find a way to arrive at unexpected and unique design solutions (6). This new 

method of design not only implies significant changes in traditional design 

practices, revising design attitudes and means of action, but also allows us to 

contemplate aspects of form and function at the same time as solving design 

problems. 

Currently, the software most widely used by architects for shape modeling do 

not allow the input of information to evaluate the building performance, and 

thus, the simulation is performed after the final design of the project in other 

software specifically used for performance evaluation (7). If the design does 

not reach the desired level, it must be remodeled and altered to adapt it to 

higher levels of performance, which may cause an undesired extra effort to 

the process, distancing architects and professionals from their use. Thus, the 

importance of simulation from the initial stages of design is reinforced. 
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According to Gossard; Lartigue and Thellier (8), improving the buildings’ 

thermal performance can be achieved in two ways: trial and error, which 

means an improvement achieved through failures; or an algorithm-based 

approach to optimization, a more efficient method. The trial-and-error method 

can create acceptable solutions, but the latter, because it is based on global 

search, is more likely to indicate the best solutions for a design (9). 

Performance-based architectural design is therefore an effective approach to 

the design of more efficient solutions, as long as obstacles to interoperability 

are overcome, which has been occurring in the last decades (3). 

There are different ways of setting parameters for a project, one of which is 

through scripts to program complex algorithms. There are currently several 

software with friendly interfaces that facilitate the use and development of 

scripts without the need for previous programming knowledge, with a simpler 

language. For example, Grasshopper is a parametric modeling plug-in for the 

software Rhinoceros and HoneyBee is a plug-in for Grasshopper that 

connects the shape parameterization of Rhinoceros to the Energy Plus 

performance analysis software. Octopus is the optimization engine connected 

to Grasshopper that makes the decisions of the variables to combine and 

changes the shape of the model in Rhinoceros based on the data provided by 

Energy Plus (10). 

Optimization processes aim to improve the performance of buildings based 

on deciding on a condition considered satisfactory. According to Nguyen, 

Reiter, Rigo (1), the optimization can be classified according to the number of 

objective functions, and it can be mono or multi-objective. The multi-objective 

optimization or Pareto optimization is more interesting because, in addition to 

approaching more real problems - since designers usually need to deal with 

conflicting design criteria - multi-objective optimization seeks the balance 

between the defined objectives (11). In this simulation method, the designer 

is free to choose one or more solutions that are interesting for his design in a 

visual and quantitative analysis of each solution related to the objectives. 

A widely used optimization approach is through genetic algorithms, a method 

based on the process of natural selection mimicking biological nature. The 

algorithm modifies the individual solutions based on crossing the best cases 

of one generation to create the next generation repeatedly until the end of the 

simulation, the stopping criterion of which is the convergence of the graph or 

a pre-set number of generations (11). The stopping criterion is an obstacle for 

those working with the SBO method. According to Fonseca et al. (12), the 

user can stop the optimization process when it reaches the number of 

generations pre-set by the user or by observing if the values of the objective 

function do not present significant variations (when the optimization reaches 

convergence). 

Octopus is a plug-in developed for Grasshopper that enables this type of multi-

objective optimization and works through genetic algorithms (10). It offers the 

user the possibility of working with two or more objectives, the third being 

diversity of parameters. Its advantage is to maximize the distance of each 

solution to all other solutions in the genetic space, preventing the algorithm 

from fixing on or locking in local solutions (10). The plug-in also allows users 

to graphically visualize the optimization convergence based on the Pareto 

Front, which is constituted by a set of optimum solutions according to the 

objectives set for the optimization (13). 
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When working with the Simulation-Based Optimization, Santana and Carlo 
(14) and Santana (15) studied this method applied to multi-objective 
simulations aiming to optimize the thermal performance of a housing unit for 
both winter and summer conditions. Santana and Carlo (14) studied a low 
geometric complexity model, composed of one thermal zone and a small 
number of variables, to verify the efficiency of the SBO method in searching 
for optimum solutions, using the performance criteria prescribed in the 
Technical Regulation of Quality for Energy Efficiency of Residential Buildings 
(RTQ- R) (16). The authors showed that, when compared to the base-case, 
the annual degree-hours decreased by around 15% for the optimum solutions. 
Santana (15) applied the same method for a more complex model, a housing 
unit with eight thermal zones. By considering the room’s depth and width as 
variable parameters, the impact of the shape on the building thermal 
performance was evaluated through the identification of the optimum 
solution’s prevailing geometric characteristics. 

Likewise, Acar; Kasha, and Tokgoz (17) and Fonseca et al (12) performed a 
multi-objective optimization aiming to reduce the construction costs and 
improve the thermal performance of a residential building. The authors were 
able to select optimum solutions from the Pareto Front, showing that the SBO 
method can be a powerful tool to be used in the early design stages of 
architectural projects. Furthermore, Salata et al. (18) pointed out the SBO 
method as a potential tool for energy requalification of existing buildings. The 
authors conducted a multi-objective optimization aiming to reduce the annual 
energy demand, construction costs, and greenhouse gas emissions of a 
residential building. Through this method, they were able to identify the most 
advantageous retrofitting interventions for nineteen European cities with 
different climates. 

METHODS 

Representative model definition 

The representative model developed for this study is a single-family housing 

unit based on the standards established by Santana (15). The model is formed 

of a single story consisting of 5 rooms: 2 bedrooms, 1 living room, 1 bathroom, 

and 1 kitchen (Figure 1). It was considered that in its surroundings there would 

be no obstructions shading the building. It was established that certain 

characteristics of the building remained constant so that those linked to the 

shape decision making were analyzed. This was based on the premise that 

building parameters can only be evaluated when the other parameters (which 

will not be analyzed) are considered efficient in order to avoid masking results 

(19). Thus, the constants of this model follow that prescribed to reach level A 

according to the RTQ-R (16).  

Geometric variations were set only for the long term occupancy rooms 

(Bedrooms and Living room). To establish their minimum areas the Building 

Work Code for São Paulo, Brazil, was used  (20). Windows were defined as 

the minimum area required for ventilation according to the São Paulo building 

work code (minimum 15% of the room’s floor area), but also taking into 

consideration the minimum value suggested by the RTQ-R (minimum of 17% 

of the room’s floor area) (Table 1). For those rooms with constant areas, an 

opening with an area of 1m2 for the kitchen and bathroom was defined (Figure 

1 and Table 1). 
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Figure 1: Housing- unit representative model in the study 

 

 
(a) Base case floor plan (b) Rooms geometric variations 

 

 

Table 1: Variable parameters: minimum and maximum dimensions of prolonged stay rooms 

 Room Variable 
Mín 

value (m) 
Max  

values (m) 
Type Nature 

1 

Bedroom 
1 

X1 2.0 6.0 Continuous Dependent 

2 Y1 2.6 6.0 Continuous Independent 

3 
Window-to-
floor ratio 

17% 90% Continuous Dependent 

4 

Bedroom 
2 

X2 2.1 6.0 Continuous Independent 

5 Y2 2.5 6.0 Continuous Dependent 

6 
Window-to-
floor ratio 

17% 90% Continuous Dependent 

7 

Living 
Room 

X3 4.1 6.0 Continuous Independent 

8 Y3 2.6 6.0 Continuous Independent 

9 
Window-to-
floor ratio 

17% 90% Continuous Dependent 

8 All rooms Height 2.5 4.0 Continuous Independent 

 

The decision on the type of roof and construction materials was based on 

Santana (15), where the percentage of the roof slope is dependent on the 

variation of the height of the ridge and the material used varies according to 

its slope. Two types of material were used for the roof: ceramic tile and fiber 

cement tile. The material adopted for the walls was a mortar-coated ceramic 

block. The slab chosen was a concrete slab and the material used for the floor 

was composed of concrete, mortar plaster, and ceramic. The thermal 

properties of the material are based on NBR15220 (21). 

Representative model parameterization 

The representative housing unit was modeled in Grasshopper and connected 

to the HoneyBee plug-in to analyze its thermal performance (figure 2). The 
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model was divided into nine thermal zones, three for long-term occupancy 

rooms (bedroom 1, bedroom 2, and living room), two for transient occupancy 

(kitchen and bathroom), and four for the roof attic (two for each side of the 

roof). The location determined for the model was the city of São Paulo (SP), 

which was included in the script as an "epw" file using a tool from the LadyBug 

plug-in, complementary to Honeybee. 

To identify the internal walls, floor, ceiling, and external walls of the model, 

each face of the room was modeled separately, and when assembled, they 

create a room corresponding to a thermal zone (Figure 2). With the change in 

size between the rooms (Figure 1b), sometimes one part of the wall may be 

larger than the wall of the adjacent room and sometimes it may be smaller 

than the wall of the surrounding room. Thus, when the wall is larger than that 

of the adjacent room, two surfaces are automatically created for the same 

face: an inner and an outer surface. With this variation generated for the faces 

of each room, the HoneyBee plug-in is not able to create a "closed" thermal 

zone, generating an error. Because of this limitation, constraints on the 

measurements ensured that the number of surfaces of each room remained 

constant. Thus, it was decided that: 

y3>y2 | therefore, the wall of the living room would receive the sun from the 

East and would prevent bedroom 2 from receiving the sun from the West. 

x2>x1 | As y2 has previously been restricted, x2 is free, as is y1, while x1 is 

restricted. 

Figure 2: Representative model created through Grasshopper and Honeybee 

 

(a) Representative model 

parameterized through 

grasshopper 

(b) Faces identified as 

external walls through 

Honeybee 

(c) Faces identified as 

internal walls through 

Honeybee 

(d) Faces identified as 

ground floor through 

Honeybee 

Multi-objective optimization 

The objective of the optimization was to find the lowest value possible for 

cooling degree-hours (DHc) and heating degree-hours (DHh) with a base 

temperature of 26oC and 18oC, respectively. The outputs of the simulation 

were given in hourly operative temperature (OT) for the period of one year. 

The adopted conditions for the objectives were: 

Objective 1: Temperatures higher than 26o are filtered and then the equation 

is applied: DHc = ∑ (OT – 26o)  

Objective 2: Temperatures lower than 18o are filtered and then the equation 

is applied: DHh = ∑ (18o - OT) 
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Thus, the results of DHc and DHh were connected to the Octopus optimization 

engine as objective functions, in addition to the 11 geometric variables. As a 

third objective, the diversify parameters option was added to the simulation. 

RESULTS AND DISCUSSION 

Analysis of simulation stopping criteria 

One of the challenges in simulation-based optimization (SBO) is deciding on 

the stopping criteria. As the number of generations needed to find an optimum 

solution for the established objectives was unknown, the criteria of observing 

the convergence in the graphs were used, combined with exhaustive creation 

of generations. 

To analyze the results, the Octopus optimization engine was up and running 

for 240 hours (10 days), obtaining a total of 294 generations and 21,887 

scenarios. During the 10 days of simulation, pauses were made to collect the 

results obtained and to observe progress in the convergence of the data 

(Table 2, Figures 3 and 4). Figure 3 indicates convergence of the parameters 

and Figure 4 indicates the oscillation of the objectives. Moreover, we also 

analyzed the results of the Pareto Front at each pause, to analyze whether 

there was a considerable difference in the scenarios generated between the 

pauses. Tables 3, 4, 5, and 6 represent the values of DHc and DHh of the 

scenarios composing the Pareto Front identified in each pause. 

When analyzing the convergence in Figure 3, we can see that it is only in the 

fourth pause that the graph does not show inconstancy in the oscillation of the 

objectives (Figure 4). However, when analyzing the values that the Pareto 

Front described in Tables 3 to 6, from the first pause to the fourth pause, the 

difference found is only 2.8 o Ch for DHh and 0.4o Ch for DHc. Thus, it can be 

seen that 87 generations were enough to obtain significant results. Therefore, 

we can conclude that the criterion of convergence of parameters (Figure 3) is 

more appropriate for visual analysis in monitoring optimization than oscillation 

of the objectives (Figure 4). 

Table 2: Pauses made during the convergence. 

Pauses Optimization duration Number of generations 
Number of 
scenarios 

1 71 hours 87 4655 

2 97 hours 116 7004 

3 193 hours 237 17010 

4 239 hours 294 21887 

Figure 3: Convergence of parameters during the optimization process 

    

(a) First pause (b) Second pause (c) Third pause (d) Fourth pause 
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Figure 4: Oscilation of the objectives during the optimization process 

  

(a) First pause (b) Second pause 

  

(c) Third pause (d) Fourth pause 

Table 3: 1st pause made during the optimization process 

Case Generation DHh DHc 

1 86 4365 667.6 

2 86 4367 667.1 

3 86 4369 667.3 

4 86 4370 667.1 

5 86 4378 667.0 

6 86 4379 666.9 

7 86 4380 666.6 

8 86 4381 666.3 

9 86 4382 666.0 

10 86 4383 665.8 

11 86 4386 665.7 

12 86 4388 665.6 

13 86 4391 665.5 

 
Table 4: 2nd pause made during the optimization process 

Case Generation DHh DHc 

1 116 4365 667.6 

2 116 4367 667.3 

3 116 4369 667.1 

4 116 4371 666.9 

5 116 4373 666.8 

6 116 4378 666.8 

7 116 4380 666.4 

8 116 4381 666.3 

9 116 4382 666.0 

10 116 4383 665.9 

11 116 4385 665.8 

12 116 4386 665.6 

13 116 4387 665.5 

14 116 4389 665.4 
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Table 5: 3rd pause made during the optimization process 

Case Generation DHh DHc 

1 237 4365 667.6 

2 237 4367 667.3 

3 237 4369 667.1 

4 237 4371 666.9 

5 237 4372 666.7 

6 237 4380 666.4 

7 237 4382 666.0 

8 237 4383 665.8 

9 237 4384 665.7 

10 237 4387 665.5 

11 237 4389 665.3 

12 237 4392 665.2 

13 237 4395 665.1 

 
 

Table 6: 4th pause made during the optimization process 

Case Generation DHh DHc 

1 294 4365 667.3 

2 294 4365 667.6 

3 294 4367 667.1 

4 294 4369 666.9 

5 294 4371 666.7 

6 294 4372 666.4 

7 294 4374 666.0 

8 294 4376 665.8 

9 294 4380 665.7 

10 294 4382 665.5 

11 294 4383 665.3 

12 294 4385 665.1 

13 294 4387 665.2 

14 294 4390 665.3 

 

 

To confirm the analysis of the simulation stopping time, previous studies which 

performed simulations with the Octopus optimization engine were analyzed 

(12, 15). Table 7 shows the characteristics of each study and the number of 

generations created to reach simulation convergence. It can be seen from 

Table 7 that in the study by Fonseca et al. (12), the number of generations 

created to reach convergence of optimization was 99 generations, which is 

closer to the number of generations obtained in the first pause of this study. 

In Santana (15), due to presenting computational difficulties in optimization, 

the study only reached 12 generations, and results were validated through a 

Surrogate Model (model reduced to essential characteristics to minimize 

computational expenditure in the process). 
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Table 7: Comparison of simulation time in previous studies 

Reference 
Variable 

parameters 
Thermal 
zones 

Number of 
Generations 

Population size 

This study 11 9 87 / 294 4655 / 21887 

Fonseca 
et al. (12) 

8 10 99 19800 

Santana 
(15) 

9 8 12 1495 

 

After verification and checking of convergence of the optimization in the first 

pause, the results of the first 87 generations were adopted, analyzing the 

space of solutions and the Pareto Front, represented in Figures 5 and 6. It 

was noticed that the results converged to a point, where it is not possible to 

identify a Pareto Front. When approaching area 1, where the best cases are 

found, the point of convergence becomes a curve. However, the variation of 

the solutions from the Pareto Front is not significant - 665o Ch to 667o Ch for 

DHc and 4365o Ch to 4391o Ch for DHh – which implies in a series of 

equivalent performance solutions. 

 

 
Figure 5: Pareto Front - best cases (area 1) and worst cases (area 2) 
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Figure 6: Zoom in area 1, showing the Pareto Front 

 

From analyzing all cases obtained up to generation 87, based on the DHc 

results, it was observed that, according to the RTQ-R (16), only 48.4% of the 

results presented a level of efficiency A, 51.2% level B, and 0.4% level C. 

Results indicated that the construction materials and colors/solar absorptance 

indicated by the RTQ-R alone were not enough to ensure level A for all the 

scenarios.  

By analyzing the best cases obtained in the Pareto Front, thirteen models 

were identified (Figure 7). All of the models were classified as level A and 

geometric similarities were identified. For all the solutions presented in the 

Pareto Front, there was a relation between the ceiling height and rooms’ area. 

When the model presented a large room area, the ceiling height was low and 

vice versa, which was determinant for good thermal performance. For DHh, 

results showed that the models presented smaller floor areas when compared 

with the solutions found for DHc. Also, the larger the area of contact with the 

ground, the greater its contribution to cooling the internal rooms, which 

justifies small areas for the rooms optimized for DHh. Openings were set 

through optimization as predominantly medium, and larger when located in 

east-facing bedrooms. 

The best cases selected for DHc presented as dominant characteristics: 

larger floor areas, smaller openings, high ceilings, and steep roofs, due to the 

height of the ridge. By analyzing the geometry with the best solutions found in 

the Pareto Front, the interval between the solutions was narrow: from 2oCh for 

DHc and 25oCh to DHh. Thus, simultaneous analysis for DHc and DHh was 

possible, with a great similarity between the cases C, I, K, and M, which were 

positioned at the beginning, middle, and end of the curve (Figure 8). 

To represent the worst solutions, 8 cases were selected from area 2, identified 

in Figure 5 (Figure 9). If we consider model C as representative of the Pareto 

Front and model N of the worst cases, we can see that the latter is composed 
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of wide glazed areas that receive high incidence of solar radiation and rooms 

with larger areas than the models in the Pareto Front (Figure 10) 

Figure 7: Best cases found in optimization (area 1 highlighted in figure 5) 

 

Figure 8: Similarity of the C, I, K, and M models 
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Figure 9: Worst cases found in optimization (area 2 highlighted in figure 5) 

 

Figure 10: Comparison between the best and worst solutions found 
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CONCLUSION 

In this study, the process for optimizing a housing unit was approached, 
varying geometric parameters while considering materials, colors, and 
window frame models as constants. The universe of solutions presented 
maximum values close to 1920o Ch for Cooling Degree-hours (DHc); 5164o 
Ch for Heating Degree-hours (DHh) and minimums around 665o Ch for cooling 
and 4365o Ch for heating. The fixed parameters values, chosen based on 
those recommended to achieve level A according to the RTQ-R, were not 
sufficient to ensure that all solutions reached level A but prevented the cases 
from reaching very low levels such as D or E, with only 0.4% of cases reaching 
level C.  

Divergent characteristics were observed for DHc and DHh in the Pareto Front, 
such as the size of opening areas and room areas, although a combination of 
high ceiling height with smaller room areas and vice versa was identified for 
all cases. Although this divergence occurred between the characteristics, four 
similar models were observed in the Pareto Front: models C, I, K, and M. 
These models presented in common the high ceiling, steep roof due to the 
height of 3.3m from the ridge, small rooms and openings located in all solar 
orientations. The worst cases can be seen visually, for larger models 
regarding the floor area. In addition, they present larger areas of window 
opening. 

In general aspects, concerning most impacting geometric parameters in the 
building, the thermal performance can be partially predicted based on the 
literature, such as the impact of the area in contact with the ground and large 
areas of glazed openings. However, although the majority of the cases on the 
Pareto Front have common characteristics, there are still geometric 
conformations that differ from the predominant ones that also present good 
results, thus emphasizing the importance of the use of the thermal simulation 
for the design of energy-efficient buildings starting from the design stage. 

Regarding the study of stopping criteria, by analyzing the results of the 
pauses, it was observed that 87 generations, 4655 individuals, were enough 
for the convergence, even if, visually, the objective functions still presented 
some oscillations. 

The optimization process was described in the methodology. Its tools were 
found to be user-friendly from the point of view of the architects and do not 
require in-depth knowledge of programming, but the accessibility of the usual 
architectural design process is still low considering the entire modeling 
process of a housing unit. Besides the tools used for the purpose of this study, 
the plugin also offered many other possibilities that can be used in greater 
depth to optimize other objectives. 
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